【題目】如圖,點P是 所對弦AB上一動點,點Q是與弦AB所圍成的圖形的內(nèi)部的一定點,作射線PQ交于點C,連接BC.已知AB=6cm,設A,P兩點間的距離為xcm,P,C兩點間的距離為y1cm,B,C兩點間的距離為y2cm.(當點P與點A重合時,x的值為0).
小平根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小平的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y與x的幾組對應值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.37 | 4.06 | 2.83 | m | 3.86 | 4.83 | 5.82 |
y2/cm | 2.68 | 3.57 | 4.90 | 5.54 | 5.72 | 5.79 | 5.82 |
經(jīng)測量m的值是(保留一位小數(shù)).
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當△BCP為等腰三角形時,AP的長度約為 cm.
【答案】(1)3;(2)詳見解析;(3)1.2或1.6或3.0.
【解析】
(1)利用圓的半徑相等即可解決問題;
(2)利用描點法畫出圖象即可.
(3)圖中尋找PB長關(guān)于x的函數(shù):直線y=-x+6與兩個函數(shù)的交點的橫坐標以及y1與y2的交點的橫坐標即可.
解:(1)(1)∵PA=0時,點P與點A重合,AB=6,PC=AC=5.37,BC=2.68,
∴AB2=PC2+BC2,
∴∠ACB=90°,
∴AB是直徑.
當x=3時,PA=PB=PC=3,
∴y1=3,
故答案為3.
(2)如圖;
(3)觀察圖象可知:當x=y,即當PB=PC或PB=BC時,x=3或1.2,
當y1=y2時,即PC=BC時,x=1.6,或x=6(與P重合,△BCP不存在)
綜上所述,滿足條件的x的值為1.2或1.6或3,.
故答案為1.2或1.6或3.0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=a(x﹣1)2+k的圖象與x軸交于A,B兩點,AB=4,與y軸交于C點,E為拋物線的頂點,∠ECO=135°.
(1)求二次函數(shù)的解析式;
(2)若P在第四象限的拋物線上,連接AE交y軸于點M,連接PE交x軸于點N,連接MN,且S△EAP=3S△EMN,求點P的坐標;
(3)過直線BC上兩點P,Q(P在Q的左邊)作y軸的平行線,分別交拋物線于N,M,若四邊形PQMN為菱形,求直線MN的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明參加班長競選,需進行演講答辯與民主測評,民主測評時一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評委對小明“演講答辯”的評分統(tǒng)計圖及全班50位同學民主測評票數(shù)統(tǒng)計圖.
(1)求評委給小明演講答辯分數(shù)的眾數(shù),以及民主測評為“良好”票數(shù)的扇形圓心角度數(shù);
(2)求小明的綜合得分是多少?
(3)在競選中,小亮的民主測評得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,Rt△ABC中,∠ACB=90°,AC=5,BC=12,點D在邊AB上,以AD為直徑的⊙O,與邊BC有公共點E,則AD的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在爭創(chuàng)“全國文明城市”活動中,組織全體學生參加了“創(chuàng)文”知識競賽,為了解各年級成績情況,學校這樣做的:
(收集數(shù)據(jù))從七、八、九三個年級的競賽成績中各隨機抽取了10名學生成績?nèi)缦卤恚?/span>
七年級 | 60 | 70 | 60 | 100 | 80 | 70 | 80 | 60 | 40 | 90 |
八年級 | 80 | 80 | 100 | 40 | 70 | 60 | 80 | 90 | 50 | 80 |
九年級 | 70 | 50 | 60 | 90 | 100 | 80 | 80 | 90 | 70 | 70 |
(整理、描述數(shù)據(jù))(說明:80≤x≤100為優(yōu)秀,60≤x<80為合格,40≤x<60為一般)
年級 | 40≤x<60 | 60≤x<80 | 80≤x≤100 |
七年級 | 1 | 5 | 4 |
八年級 | 2 | 2 | 6 |
九年級 | 1 | 4 | 5 |
年級 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
七年級 | a | 60 | 70 |
八年級 | 73 | b | 80 |
九年級 | 76 | 70 | c |
(分析數(shù)據(jù))三組樣本數(shù)據(jù)的平均分、眾數(shù)、中位數(shù)如上表所示,其中a= ,b= ,c= .
(得出結(jié)論)請你根據(jù)以上信息,推斷你認為成績好的年級,并說明理由(至少從兩個角度說明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關(guān)系的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經(jīng)過點A(3,-1),與y軸交于點B.
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若S△OPA=2S△OQA,試求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4,求∠C的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com