【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點(diǎn)O為位似中心放大為原來(lái)的 倍,得到矩形A1OC1B1 , 再將矩形A1OC1B1以原點(diǎn)O為位似中心放大 倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對(duì)角線交點(diǎn)的坐標(biāo)為

【答案】(﹣ ,
【解析】解:∵在第二象限內(nèi),將矩形AOCB以原點(diǎn)O為位似中心放大為原來(lái)的 倍, ∴矩形A1OC1B1與矩形AOCB是位似圖形,點(diǎn)B與點(diǎn)B1是對(duì)應(yīng)點(diǎn),
∵OA=2,OC=1.
∵點(diǎn)B的坐標(biāo)為(﹣2,1),
∴點(diǎn)B1的坐標(biāo)為(﹣2× ,1× ),
∵將矩形A1OC1B1以原點(diǎn)O為位似中心放大 倍,得到矩形A2OC2B2…,
∴B2(﹣2× × ,1× × ),
∴Bn(﹣2× ,1× ),
∵矩形AnOCnBn的對(duì)角線交點(diǎn)(﹣2× × ,1× × ),即(﹣ , ),
故答案為:(﹣ , ).
根據(jù)在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或﹣k,即可求得Bn的坐標(biāo),然后根據(jù)矩形的性質(zhì)即可求得對(duì)角線交點(diǎn)的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次全程為20km的越野賽中,甲、乙兩名選手所跑的路程y(km)與時(shí)間x(h)之間函數(shù)關(guān)系的圖象如圖中折線O﹣A﹣B﹣C和線段OD所示,兩圖象的交點(diǎn)為M.根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)請(qǐng)求出圖中a的值;

(2)在乙到達(dá)終點(diǎn)之前,問(wèn):當(dāng)x為何值時(shí),甲、乙兩人相距2km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD∽四邊形EFGH,連接相應(yīng)的對(duì)角線AC,EG.
(1)求證△ABC∽△EFG;
(2)若 = ,直接寫(xiě)出四邊形ABCD與四邊形EFGH的面積比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P到∠AOB的距離定義如下:點(diǎn)Q為∠AOB的兩邊上的動(dòng)點(diǎn),當(dāng)PQ最小時(shí),我們稱此時(shí)PQ的長(zhǎng)度為點(diǎn)P到∠AOB的距離,記為d(P,∠AOB).特別的,當(dāng)點(diǎn)P在∠AOB的邊上時(shí),d(P,∠AOB)=0.在平面直角坐標(biāo)系xOy中,A(4,0).
(1)如圖1,若M(0,2),N(﹣1,0),則d(M,∠AOB)= , d(N,∠AOB)=;
(2)在正方形OABC中,點(diǎn)B(4,4).如圖2,若點(diǎn)P在直線y=3x+4上,且d(P,∠AOB)=2 ,求點(diǎn)P的坐標(biāo);
(3)如圖3,若點(diǎn)P在拋物線y=x2﹣4上,滿足d(P,∠AOB)=2 的點(diǎn)P有個(gè),請(qǐng)你畫(huà)出示意圖,并標(biāo)出點(diǎn)P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩支清雪隊(duì)同時(shí)開(kāi)始清理某路段積雪,一段時(shí)間后,乙隊(duì)被調(diào)往別處,甲隊(duì)又用了3小時(shí)完成了剩余的清雪任務(wù),已知甲隊(duì)每小時(shí)的清雪量保持不變,乙隊(duì)每小時(shí)清雪50噸,甲、乙兩隊(duì)在此路段的清雪總量y(噸)與清雪時(shí)間x(時(shí))之間的函數(shù)圖象如圖所示.
(1)乙隊(duì)調(diào)離時(shí),甲、乙兩隊(duì)已完成的清雪總量為噸;
(2)求此次任務(wù)的清雪總量m;
(3)求乙隊(duì)調(diào)離后y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm,花園的面積為S.
(1)求S與x之間的函數(shù)表達(dá)式;
(2)若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),求花園面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形.

(1)將△ABC向右平移3個(gè)單位長(zhǎng)度,畫(huà)出平移后的△A1B1C1
(2)將△ABC繞點(diǎn)O旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后的△A2B2C2
(3)畫(huà)出一條直線將△AC1A2的面積分成相等的兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在半徑為1的⊙O中,弦AB、AC的長(zhǎng)分別為1和 ,則∠BAC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課前預(yù)習(xí)是學(xué)習(xí)數(shù)學(xué)的重要環(huán)節(jié),為了了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,王老師對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)王老師一共調(diào)查了多少名同學(xué)?
(2)C類女生有名,D類男生有名,將上面條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,王老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案