【題目】如圖,兩個正方形邊長分別為a、b,且滿足a b 10, ab 12,圖中陰影部分的面積為( )
A.100B.32C.144D.36
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夾在兩條平行線間的正方形ABCD、等邊三角形DEF如圖所示,頂點A、F分別在兩條平行線上.若A、D、F在一條直線上,則∠1與∠2的數(shù)量關(guān)系是( 。
A. ∠1+∠2=60° B. ∠2﹣∠1=30° C. ∠1=2∠2. D. ∠1+2∠2=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)商的經(jīng)適房的三個居民小區(qū)A、B、C在同一條直線上,位置如圖所示.其中小區(qū)B到小區(qū)A、C的距離分別是70m和150m,現(xiàn)在想在小區(qū)A、C之間建立一個超市,要求各小區(qū)居民到超市總路程的和最小,那么超市的位置應(yīng)建在( 。
A.小區(qū)AB.小區(qū)BC.小區(qū)CD.AC的中點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沿圖1長方形中的虛線平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)圖2中的陰影部分的面積為 .
(2)觀察圖2,請你寫出代數(shù)式(m+n)2、(m-n)2、mn之間的等量關(guān)系式.
(3)根據(jù)你得到的關(guān)系式解答下列問題:若x+y=-6,xy=5,則x–y= .
(4)實際上有許多代數(shù)恒等式可以用圖形的面積來表示.如圖3,它表示了(2m+n)(m+n)=2m2+3mn+n2.試畫出一個幾何圖形,使它的面積能表示(m+n)(m+3n)=m2+4mn+3n2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一個題目:“如圖,ABCD的對角線相交于點O,過點O作EF垂直于BD交AB,CD分別于點F,E,連接DF,BE.請根據(jù)上述條件,寫出一個正確結(jié)論.”其中四位同學(xué)寫出的結(jié)論如下:
小青:OE=OF;小何:四邊形DFBE是正方形;
小夏:S四邊形AFED=S四邊形FBCE;小雨:∠ACE=∠CAF.
這四位同學(xué)寫出的結(jié)論中不正確的是( 。
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(0,2),B(4,0),C(4,3)三點.
(1)建立平面直角坐標(biāo)系并描出A、B、C三點
(2)求△ABC的面積;
(3)如果在第二象限內(nèi)有一點P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(a,0),B (b,0),a、b滿足方程組,C為y軸正半軸上一點,且.
(1)求A、B、C三點的坐標(biāo);
(2)是否存在點D(t,-t)使?若存在,請求出D點坐標(biāo);若不存在,請說明理由.
(3)已知E(-2,-4),若坐標(biāo)軸上存在一點P,使,請求出P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com