【題目】如圖,正方形ABCD的邊長是,連接交于點(diǎn)O,并分別與邊交于點(diǎn),連接AE,下列結(jié)論:;;;當(dāng)時(shí),,其中正確結(jié)論的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】解:∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP,故①正確;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴=,即AO2=ODOP.∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OEOP,故②錯(cuò)誤;
在△CQF與△BPE中,,∴△CQF≌△BPE,∴CF=BE,∴DF=CE.在△ADF與△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF,故③正確;
∵BP=1,AB=3,∴AP=4.∵△PBE∽△PAD,∴==,∴BE=,∴QE=.∵∠QOE=∠POA,∠P=∠Q,∴△QOE∽△POA,∴===,即tan∠OAE=,故④錯(cuò)誤.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
我們把表格中字母的和所得的多項(xiàng)式稱為"'特征多項(xiàng)式",例如:第1格的“特征多項(xiàng)式”為 4x+y,第 2 格的“特征多項(xiàng)式”為 8x+4y, 回答下列問題:
(1)第 3 格的“特征多項(xiàng)式”為 第 4 格的“待征多項(xiàng)式”為 , 第 n 格的“特征多項(xiàng)式”為 .
(2)若第 m 格的“特征多項(xiàng)式”與多項(xiàng)式-24x+2y-5 的和不含有 x 項(xiàng),求此“特征多項(xiàng)式”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展以“我最喜愛的傳統(tǒng)文化”為主題的調(diào)查活動,從“詩詞、國畫、對聯(lián)、書法、戲曲”五種傳統(tǒng)文化中,選取喜歡的一種(只選一種)進(jìn)行調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整統(tǒng)計(jì)圖.
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)喜歡“書法”的有多少名學(xué)生?并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求喜歡“國畫”對應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點(diǎn)C在原點(diǎn),將其繞著點(diǎn)O旋轉(zhuǎn),若頂點(diǎn)A恰好落在點(diǎn)處則的長為______;點(diǎn)B的坐標(biāo)為______直接寫結(jié)果
感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點(diǎn),點(diǎn),試求直線AB的函數(shù)表達(dá)式.
拓展研究:如圖3,在直角坐標(biāo)系中,點(diǎn),過點(diǎn)B作軸,垂足為點(diǎn)A,作軸,垂足為點(diǎn)C,P是線段BC上的一個(gè)動點(diǎn),點(diǎn)Q是直線上一動點(diǎn)問是否存在以點(diǎn)P為直角頂點(diǎn)的等腰,若存在,請求出此時(shí)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 中,點(diǎn) ,點(diǎn) 分別在 軸, 軸上, 為邊 上的一動點(diǎn),現(xiàn)把 沿 對折, 點(diǎn)落在點(diǎn) 處.已知點(diǎn) 的坐標(biāo)為 .
(1) 當(dāng) 點(diǎn)坐標(biāo)為 時(shí),求 點(diǎn)的坐標(biāo);
(2) 在點(diǎn) 沿 從點(diǎn) 運(yùn)動至點(diǎn) 的過程中,設(shè)點(diǎn) 經(jīng)過的路徑長度為 ,求 的值;
(3) 在點(diǎn) 沿 從點(diǎn) 運(yùn)動至點(diǎn) 的過程中,若點(diǎn) 落在同一條直線 上的次數(shù)為 次,請直接寫出 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)把(a﹣b)2看成一個(gè)整體,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的結(jié)果是 ;
(2)已知a+b=5(a﹣b),代數(shù)式= ;
(3)已知:xy+x=﹣6,y﹣xy=2,求2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售A、B兩種型號計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺30元,40元,商場銷售5臺A型號和1臺B型號計(jì)算器,可獲利潤76元;銷售6臺A型號和3臺B型號計(jì)算器,可獲利潤120元.求商場銷售A、B兩種型號計(jì)算器的銷售價(jià)格分別是多少元?(利潤=銷售價(jià)格﹣進(jìn)貨價(jià)格)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點(diǎn)D,E,且AE平分∠BAC.
(1)求∠C的度數(shù);
(2)若CE=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,正方形ABCD中,∠PCG=45°,且PD=BG,求證:FP=FC.
(2)如圖,正方形ABCD中,∠PCG=45°,延長PG交CB的延長線于點(diǎn)F,(1)中的結(jié)論還成立嗎?請說明理由.
(3)在(2)的條件下,作FE⊥PC,垂足為E,交CG于點(diǎn)N,連接DN,求∠NDC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com