【題目】設(shè)計(jì)一張折疊型方桌子如圖,若AO=BO=50cm,CO=DO=30cm,將桌子放平后,要使AB距離地面的高為40cm,則兩條桌腿需要叉開(kāi)的∠AOB應(yīng)為( )
A.60°
B.90°
C.120°
D.150°
【答案】C
【解析】解:作DE⊥AB于E. ∵AD=50+30=80cm,DE=40cm,
∴∠A=30°,
∵AO=BO,
∴∠B=∠A=30°,
∴∠AOB=180°﹣30°﹣30°=120°.
故選C.
【考點(diǎn)精析】本題主要考查了含30度角的直角三角形和平行四邊形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半;若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線AC和BD交于點(diǎn)O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( )
A.OA=OC,AD∥BC
B.∠ABC=∠ADC,AD∥BC
C.AB=DC,AD=BC
D.∠ABD=∠ADB,∠BAO=∠DCO
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線L:(a,b,c是常數(shù),abc≠0)與直線l都經(jīng)過(guò)y軸上的一點(diǎn)P,且拋物線L的頂點(diǎn)Q在直線l上,則稱(chēng)此直線l與該拋物線L具有“一帶一路”關(guān)系.此時(shí),直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.
(1)若直線y=mx+1與拋物線具有“一帶一路”關(guān)系,求m,n的值;
(2)若某“路線”L的頂點(diǎn)在反比例函數(shù)的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;
(3)當(dāng)常數(shù)k滿足≤k≤2時(shí),求拋物線L:的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的周長(zhǎng)為16,AC、BD相交于點(diǎn)O,OE⊥AC交AD于E,則△DCE的周長(zhǎng)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)E(x1,y1),F(xiàn)(x2,y2),如果x1+x2=2x1,y1+y2=0,那么E,F(xiàn)兩點(diǎn)關(guān)于_______對(duì)稱(chēng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店嘗試用單價(jià)隨天數(shù)而變化的銷(xiāo)售模式銷(xiāo)售一種商品,利用30天的時(shí)間銷(xiāo)售一種成本為10元/件的商品售后,經(jīng)過(guò)統(tǒng)計(jì)得到此商品單價(jià)在第x天(x為正整數(shù))銷(xiāo)售的相關(guān)信息,如表所示:
(1)請(qǐng)計(jì)算第幾天該商品單價(jià)為25元/件?
(2)求網(wǎng)店銷(xiāo)售該商品30天里所獲利潤(rùn)y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com