【題目】如圖,菱形ABCD中,AEBC于點E,∠BAE=30°,AD=4cm

1)求菱形ABCD的各角的度數(shù);

2)求AE的長.

【答案】⑴菱形各角的度數(shù)為60°120°、60°、120°;⑵AE的長為cm

【解析】

1)由AEBC,得∠AEB90°,根據(jù)三角形的內(nèi)角和即可求出∠B60°,

根據(jù)菱形的對角相等,鄰角互補即可求解.

2)根據(jù)菱形的四條邊相等得到ABAD4,因為∠BAE30°,所以BE=2cm,利用勾股定理即可求出AE的長.

AEBC

∴∠AEB90°

∵∠BAE30°

∴∠B60°

∵菱形ABCD

∴∠D=∠B60°,ABCD

∴∠BAD=∠C120°

答:菱形各角的度數(shù)為60°120°、60°、120°

∵菱形ABCD

ABAD4

∵∠BAE30°

BE2

AE

答:AE的長為cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的頂點C的坐標為(68).頂點Ax軸的正半軸上,反比例函數(shù)的圖象經(jīng)過頂B點.

1)求點AB的坐標;

2)求k值及直線AB對應的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解七年級名學生其中數(shù)學考試情況,從中抽取了名學生的數(shù)學成績進行了統(tǒng)計,下面個判斷中正確的有( )個.

①這種調(diào)查的方式是抽樣調(diào)查;②名學生是總體;③每名學生的數(shù)學成績是個體;④名學生是總體的一個樣本;⑤樣本容量是.

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某市城區(qū)地圖(比例尺1∶9000)上,新安大街的圖上長度與光華大街的圖上長度分別是16 cm,10 cm.

(1)新安大街與光華大街的實際長度各是多少米?

(2)新安大街與光華大街的圖上長度之比是多少?它們的實際長度之比呢?你發(fā)現(xiàn)了什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設邊長為的正方形的中心在直線上,它的一組對邊垂直于直線,半徑為的圓的圓心在直線上運動,、兩點之間的距離為

)如圖①,當時,填表:

、、之間的數(shù)量關系

與正方形的公共點個數(shù)

__________

__________

__________

)如圖②,與正方形有個公共點、、,求此時之間的數(shù)量關系:

)由()可知,、、之間的數(shù)量關系和⊙與正方形的公共點個數(shù)密切相關.當時,請根據(jù)、之間的數(shù)量關系,判斷⊙與正方形的公共點個數(shù).

)當之間滿足()中的數(shù)量關系時,⊙與正方形的公共點個數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(a,3),點C(5c),點B的縱坐標為6且橫縱坐標互為相反數(shù),直線AC軸,直線CB軸:

(1)寫出A、B、C三點坐標;

(2)求△ABC的面積;

(3)P為線段OB上動點且點P的橫、縱坐標互為相反數(shù),當△BCP的面積大于12小于16時,求點P橫坐標取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線,點B在直線MN上,點A為直線PQ上一動點,連接AB.在直線AB的上方做,使,設,的平分線所在直線交PQ于點D

1)如圖1,若,且點C恰好落在直線MN上,則________;

2)如圖2,若,且點C在直線MN右側(cè),求的度數(shù);

3)若點C在直線MN的左側(cè),求的度數(shù).(用含有α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式,例如圖1,可以得到這個等式,請解答下列問題:

(1)寫出圖2中所表示的數(shù)學等式______________;(最后結(jié)果)

(2)根據(jù)整式乘法的運算法則,通過計算驗證上述等式;

(3)利用(1)中得到的結(jié)論,解決問題:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值;

(4)小明同學用圖3x張邊長為a的正方形,y張邊長為b的正方形,z張邊長分別為a、b的長方形紙片拼出一個面積為(5a+2b)(3a+5b)的長方形,求x+y+z的值.

查看答案和解析>>

同步練習冊答案