【題目】如圖,中,,,點(diǎn)P從頂點(diǎn)B出發(fā),沿BCA以每秒1cm的速度勻速運(yùn)動(dòng)到A點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為x秒,長(zhǎng)度為y cm.某學(xué)習(xí)小組對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是他們的探究過程,請(qǐng)補(bǔ)充完整:

1)通過取點(diǎn),畫圖,測(cè)量,得到了x(秒)與ycm)的幾組對(duì)應(yīng)值:

x

0

1

2

3

4

5

6

7

8

9

10

11

12

13

y

0.0

1.0

2.0

3.0

4.0

4.2

3.6

3.2

3.0

3.6

4.2

5.0

要求:補(bǔ)全表格中相關(guān)數(shù)值(保留一位小數(shù));

2)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)x約為__________時(shí),

【答案】(1) 5.03.2,如下表格所示;

(2) 函數(shù)圖像如下所示:

(3) 2.5秒或8.1.

【解析】

(1)在坐標(biāo)網(wǎng)格中描出表格中的點(diǎn),找出規(guī)律即可得到答案;

(2)描出表格中點(diǎn)后再連線,即可得到函數(shù)圖像;

(3)分類討論:當(dāng)P點(diǎn)在線段BC上時(shí)和P點(diǎn)在線段AC上時(shí)兩種情況,然后再在圖像中畫出CP的長(zhǎng)度隨x變化的函數(shù)圖像,根據(jù)兩個(gè)圖像相交即可得到答案.

解:(1)當(dāng)x=5時(shí),表示P點(diǎn)運(yùn)動(dòng)了5秒,路程為5cm,此時(shí)BP=5.0cm

當(dāng)x=10時(shí),表示P點(diǎn)運(yùn)動(dòng)了10秒,路程為10cm,此時(shí)CP=10-5=5.0cm

B點(diǎn)作BHACH點(diǎn),如下圖所示,

由等腰三角形的三線合一知:CH=AH=4.0cm.

當(dāng)P1H=P2H=1cm時(shí),由對(duì)稱性知道:BP1=BP2

P點(diǎn)位于P1時(shí),所需要的時(shí)間為:5+3=8

t=10秒時(shí)BP2=BP1=3.2cm.

故表中數(shù)據(jù)補(bǔ)充如下:

x

0

1

2

3

4

5

6

7

8

9

10

11

12

13

y

0.0

1.0

2.0

3.0

4.0

5.0

4.2

3.6

3.2

3.0

3.2

3.6

4.2

5.0

故答案為:5.0;3.2.

(2)描點(diǎn)、連線,畫出函數(shù)圖像如下所示:

(3)由題意得:如下圖所示:

當(dāng)0x5時(shí),P點(diǎn)在BC上,此時(shí)對(duì)應(yīng)圖中的OM段,此時(shí)PC=5- x,如圖中藍(lán)色線所示,其交點(diǎn)k1即表示BP=CP,此時(shí)x =2.5秒;

當(dāng)5x≤13時(shí),P點(diǎn)在AC上,此時(shí)對(duì)應(yīng)圖中的MN段,此時(shí)PC= x -5,如圖中紅色線所示,

其交點(diǎn)k2即表示BP=CP,此時(shí)x約為8.1.

故答案為:2.5秒或8.1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的直徑的延長(zhǎng)線上,點(diǎn)上, ,

(1)求證: 的切線;

(2)若的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,在邊長(zhǎng)為1的正方形的邊上有—?jiǎng)狱c(diǎn)沿正方形運(yùn)動(dòng)一周,的縱坐標(biāo)與點(diǎn)走過的路程之間的函數(shù)關(guān)系用圖象表示大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你知道數(shù)學(xué)中的整體思想嗎?解題中,若把注意力和著眼點(diǎn)放在問題的整體上,多方位思考、聯(lián)想、探究,進(jìn)行整體思考、整體加減,能使問題迅速獲解.

例題:已知x2+xy=4,xy+y2=-1.求代數(shù)式x2-y2的值.

解:將兩式相減,得(x2+xy)-(xy+y2)=4-(-1),即x2-y2=5;請(qǐng)用整體思想解答下列問題:

1)在例題的基礎(chǔ)上求(x+y)2的值;

2)若關(guān)于xy的二元一次方程組的解也是二元一次方程x+y=6的解,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長(zhǎng)江汛期即將來臨,為便于夜間查看江水及兩岸河堤的情況,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈(如圖1),∠BAN=45°.燈A射線自AM順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是3度/秒,燈B轉(zhuǎn)動(dòng)的速度是1度/秒.假定這一帶長(zhǎng)江兩岸河堤是平行的,即PQMN.如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過CCDACPQ于點(diǎn)D,則在轉(zhuǎn)動(dòng)過程中,求∠BAC與∠BCD的比值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暴雨過后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn). 半小時(shí)后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時(shí)到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同,問兩隊(duì)的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ABCD,點(diǎn)P在兩平行線之間,點(diǎn)E. F分別在ABCD上,連接PE,PF.嘗試探究并解答:

(1)若圖1中∠1=36°,2=63°,則∠3=___;

(2)探究圖1中∠1,∠2與∠3之間的數(shù)量關(guān)系,并說明理由;

(3)如圖2所示,1與∠3的平分線交于點(diǎn)P`,若∠2=α,試求∠EP`F的度數(shù)(用含α的代數(shù)式表示)

(4)如圖3所示,在圖2的基礎(chǔ)上,若∠BEP與∠DFP的平分線交于點(diǎn)P,BEP與∠DFP的平分線交于點(diǎn)PBEP 與∠DFP的平分線交于點(diǎn)P,且∠2=α,直接寫出∠EPF的度數(shù)(用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織植樹活動(dòng),按年級(jí)將七、八、九年級(jí)學(xué)生分成三個(gè)植樹隊(duì),七年級(jí)植樹x棵,八年級(jí)種的數(shù)比七年級(jí)種的數(shù)的2倍少26棵,九年級(jí)種的樹比八年級(jí)種的樹的一半多42棵.

(1)請(qǐng)用含x的式子表示三個(gè)隊(duì)共種樹多少棵.

(2)若這三個(gè)隊(duì)共種樹423棵,請(qǐng)你求出這三隊(duì)各種了多少棵樹.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,有點(diǎn).

1)若線段軸,求點(diǎn)的坐標(biāo)

2)當(dāng)點(diǎn)軸的距離是到軸的距離的倍時(shí),求點(diǎn)所在的象限位置

查看答案和解析>>

同步練習(xí)冊(cè)答案