【題目】如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC的度數(shù).

【答案】解:∵EF∥AD,AD∥BC, ∴EF∥BC,
∴∠ACB+∠DAC=180°,
∵∠DAC=116°,
∴∠ACB=64°,
又∵∠ACF=25°,
∴∠FCB=∠ACB﹣∠ACF=39°,
∵CE平分∠BCF,
∴∠BCE=19.5°,
∵EF∥BC,
∴∠FEC=∠ECB,
∴∠FEC=19.5°
【解析】由EF與AD平行,AD與BC平行,利用平行于同一條直線的兩直線平行得到EF與BC平行,利用兩直線平行同旁?xún)?nèi)角互補(bǔ)求出∠ACB度數(shù),進(jìn)而求出∠FCB度數(shù),根據(jù)CE為角平分線求出∠BCE度數(shù),再利用兩直線平行內(nèi)錯(cuò)角相等即可求出所求角度數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式:32x1+1≥x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:a2a3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將平行四邊形ABCD旋轉(zhuǎn)到平行四邊形ABCD′的位置,下列結(jié)論錯(cuò)誤的是(

A. AB=AB B. ABAB C. A=∠A D. ABC≌△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C 的仰角為60°,沿山坡向上走到P處再測(cè)得C的仰角為45°,已知OA=200米,山坡坡度為(即tanPAB),且OA、B在同一條直線上,求電視塔OC的高度以及此人所在位置點(diǎn)P的垂直高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,C=90°ABC的平分線交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),O過(guò)B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.

(1) 求證:AC是O的切線;

(2) 已知AB=10,BC=6,求O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:ax2ay2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果數(shù)軸上的點(diǎn)A對(duì)應(yīng)有理數(shù)為﹣2,那么與A點(diǎn)相距3個(gè)單位長(zhǎng)度的點(diǎn)所對(duì)應(yīng)的有理數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案