【題目】如圖在ABCD中,BC=2AB,CEABE,FAD的中點(diǎn),若∠AEF=52°,則∠B=___.

【答案】76

【解析】

FAB、CD的平行線FG,由于FAD的中點(diǎn),那么GBC的中點(diǎn),即RtBCE斜邊上的中點(diǎn),由此可得BC=2EG=2FG,即GEFBEG都是等腰三角形,因此求∠B的度數(shù),只需求得∠BEG的度數(shù)即可;易知四邊形ABGF是平行四邊形,得∠EFG=AEF,由此可求得∠FEG的度數(shù),即可得到∠AEG的度數(shù),根據(jù)鄰補(bǔ)角的定義可得∠BEG的值,由此得解.

FFGABCD,交BCG;

則四邊形ABGF是平行四邊形,所以AF=BG,GBC的中點(diǎn);

BC=2AB,FAD的中點(diǎn),

BG=AB=FG=AF,

連接EG,在RtBEC中,EG是斜邊上的中線,
BG=GE=FG=BC;
AEFG
∴∠EFG=AEF=FEG=52°,
∴∠AEG=AEF+FEG=104°
∴∠B=BEG=180°-104°=76°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教室內(nèi)的飲水機(jī)接通電源進(jìn)入自動(dòng)程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時(shí)水溫()與開機(jī)后用時(shí)(分鐘)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.如圖為在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間x(分鐘)的關(guān)系如圖.

(1)a=   

(2)直接寫出圖中y關(guān)于x的函數(shù)關(guān)系式;

(3)飲水機(jī)有多少時(shí)間能使水溫保持在70℃及以上?

(4)若飲水機(jī)早上已加滿水,開機(jī)溫度是20℃,為了使8:40下課時(shí)水溫達(dá)到70℃及以上,并節(jié)約能源,直接寫出當(dāng)它上午什么時(shí)間接通電源比較合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個(gè)老年活動(dòng)中心,這樣必須把1200立方米的生活垃圾運(yùn)走:

1)假如每天能運(yùn)x立方米,所需時(shí)間為y天,寫出yx之間的函數(shù)表達(dá)式;

2)若每輛拖拉機(jī)一天能運(yùn)12立方米,則5輛這樣的拖拉機(jī)要用多少天才能運(yùn)完?

3)在(2)的情況下,運(yùn)了8天后,剩下的任務(wù)要在不超過6天的時(shí)間內(nèi)完成,那么至少需要增加多少輛這樣的拖拉機(jī)才能按時(shí)完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào))

根據(jù)以上信息,解答下列問題:

(1)該班共有   名學(xué)生.

(2)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺的部分補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,185型校服所對(duì)應(yīng)扇形圓心角=   

(4)若全校九年級(jí)共有學(xué)生800名,請(qǐng)估計(jì)穿170型校服的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.

(1)當(dāng)a=﹣時(shí),①求h的值;②通過計(jì)算判斷此球能否過網(wǎng).

(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為m的Q處時(shí),乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)ODE∥AC,AE∥BD

(1)、求證:四邊形AODE是矩形;(2)、若AB6,∠BCD120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn).將球攪勻后從中隨機(jī)摸出一個(gè)球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動(dòng)進(jìn)行中記下的一組數(shù)據(jù)

摸球的次數(shù)

100

150

200

500

800

1000

摸到白球的次數(shù)

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請(qǐng)你估計(jì),當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.1).

(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是

(3)試估算口袋中黑、白兩種顏色的球有多少只.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中添加下列條件,不能判定四邊形ABCD是矩形的是(

A. 90°B. ACBDC. AC=BDD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:

2)化簡(jiǎn)求值.2(5y)[3(3y)] ,其中=,y=-2

3解方程

查看答案和解析>>

同步練習(xí)冊(cè)答案