【題目】如圖,在平面直角坐標(biāo)系中,A,B兩點的坐標(biāo)分別是(0,4),(0,﹣4),點C是x軸上一個動點,過點B作直線BH⊥AC于點H,過點C作CD∥y軸,交BH于點D,點C在x軸上運動的過程中,點D不可能經(jīng)過的點是( 。
A. (2,﹣3) B. (1,﹣3) C. (4,0) D. (0,﹣4)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(給出定義)
若四邊形的一條對角線能將四邊形分割成兩個相似的直角三角形,那么我們將這種四邊形叫做“跳躍四邊形”,這條對角線叫做“跳躍線”.
(理解概念)
(1)命題“凡是矩形都是跳躍四邊形”是什么命題(“真”或“假”).
(2)四邊形ABCD為“跳躍四邊形”,且對角線AC為“跳躍線”,其中AC⊥CB,∠B=30°,AB=4,求四邊形ABCD的周長.
(實際應(yīng)用)已知拋物線y=ax2+m(a≠0)與x軸交于B(﹣2,0),C兩點,與直線y=2x+b交于A,B兩點.
(3)直接寫出C點坐標(biāo),并求出拋物線的解析式.
(4)在線段AB上有一個點P,在射線BC上有一個點Q,P,Q兩點分別以個單位/秒,5個單位/秒的速度同時從B出發(fā),沿BA,BC方向運動,設(shè)運動時間為t,當(dāng)其中一個點停止運動時,另一個點也隨之停止運動.在第一象限的拋物線上是否存在點M,使得四邊形BQMP是以PQ為“跳躍線”的“跳躍四邊形”,若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.
已知是比例三角形,,,請直接寫出所有滿足條件的AC的長;
如圖1,在四邊形ABCD中,,對角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當(dāng)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=75°,E為BC延長線上一點,∠ABC與∠ACE的平分線相交于點D.則∠D的度數(shù)為( 。
A.15°B.17.5°C.20°D.22.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通訊公司就上寬帶網(wǎng)推出A,B,C三種月收費方式.這三種收費方式每月所需的費用y(元與上網(wǎng)時間x(h)的函數(shù)關(guān)系如圖所示,則下列判斷錯誤的是
A. 每月上網(wǎng)時間不足25h時,選擇A方式最省錢 B. 每月上網(wǎng)費用為60元時,B方式可上網(wǎng)的時間比A方式多
C. 每月上網(wǎng)時間為35h時,選擇B方式最省錢 D. 每月上網(wǎng)時間超過70h時,選擇C方式最省錢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸交于A.B兩點,與y軸交于C點,拋物線的頂點為D點,點A的坐標(biāo)為(﹣1,0).
(1)求D點的坐標(biāo);
(2)如圖1,連接AC,BD并延長交于點E,求∠E的度數(shù);
(3)如圖2,已知點P(﹣4,0),點Q在x軸下方的拋物線上,直線PQ交線段AC于點M,當(dāng)∠PMA=∠E時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正確的個數(shù)有( )個。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知像這樣由7個全等的正六邊形組成的圖形叫做“二環(huán)蜂窩”,每個正六邊形的頂點叫做格點,頂點都在格點上的三角形叫做格點三角形.已知△ABC為該二環(huán)蜂窩一個格點三角形,則在該二環(huán)蜂窩中,以點A為頂點且與△ABC相似(包括全等但不與△ABC重合)的格點三角形最多能作的個數(shù)為( 。
A. 18 B. 23 C. 25 D. 28
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com