【題目】如圖,一次函數(shù)yk1x+b的圖象與反比例函數(shù)y的圖象相交于點A(﹣1,4)和點B4,n).

1)求這兩個函數(shù)的解析式;

2)已知點M在線段AB上,連接OAOB,OM,若SAOMSBOM,求點M的坐標(biāo).

【答案】1y=﹣,y=﹣x+3;(2)點M的坐標(biāo)為(,

【解析】

1)先把A點坐標(biāo)代入y中求出得k2得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定B點坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;

2)設(shè)Mt,﹣t+3)(﹣1t4),利用三角形面積公式得到AMBM,根據(jù)兩點間的距離公式得到(t+12+(﹣t+342 [t42+(﹣t+3+12],然后解方程求出,從而得到點M的坐標(biāo).

解:(1)把A(﹣14)代入yk2=﹣1×4=﹣4,

∴反比例函數(shù)解析式為y=﹣

B4,n)代入y=﹣,得4n=﹣4,

解得:n=﹣1,則B4,﹣1),

A(﹣1,4)和B4,﹣1)代入yk1x+b

,解得,

∴一次函數(shù)解析式為y=﹣x+3;

2)設(shè)Mt,﹣t+3)(﹣1t4),

SAOMSBOM,

AMBM,

∴(t+12+(﹣t+342 [t42+(﹣t+3+12]

整理得(t424t+12,

解得:t1t2=﹣6(舍去),

∴點M的坐標(biāo)為(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小昕的口袋中有5把相似的鑰匙,其中2把鑰匙(記為A1A2)能打開教室前門鎖,而剩余的3把鑰匙(記為B1B2,B3)不能打開教室前門鎖.

1)小昕從口袋中隨便摸出一把鑰匙就能打開教室前門鎖的概率是   ;

2)請用樹狀圖或列表等方法,求出小昕從口袋中第一次隨機摸出的一把鑰匙不能打開教室前門鎖(摸出的鑰匙不再放回),而第二次隨機摸出的一把鑰匙正好能打開教室前門鎖的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點D,OA3OC2,且BEAC,AEOB

1)求證:四邊形AEBD是菱形;

2)求經(jīng)過點E的雙曲線對應(yīng)的函數(shù)解析式;

3)設(shè)經(jīng)過點E的雙曲線與直線BE的另一交點為F,過點Fx軸的平行線,交經(jīng)過點B的雙曲線于點G,交y軸于點H,求△OFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在∠MON的邊ON上,ABOMB,AE=OB,DEONE,AD=AODCOMC

(1)求證:四邊形ABCD是矩形;

(2)DE=3,OE=9,求AB、AD的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場在五四青年節(jié)來臨之際用2400元購進A,B兩種運動衫共22件.已知購買A種運動衫與購買B種運動衫的費用相同,A種運動衫的單價是B種運動衫單價的1.2倍.

1)求A,B兩種運動衫的單價各是多少元?

2)若計劃用不超過5600元的資金再次購進A,B兩種運動衫共50件,已知AB兩種運動衫的進價不變.求A種運動衫最多能購進多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)

(2)根據(jù)經(jīng)驗,當(dāng)車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac<3ab.其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,且.點從點出發(fā),沿方向勻速運動,速度為;同時直線由點出發(fā)沿方向勻速運動,速度為,運動過程中始終保持,直線,交,連接,設(shè)運動時間為.

1___________,__________,_____________;(用含的式子表示)

2)當(dāng)四邊形是平行四邊形時,求的值;

3)當(dāng)點在線段的垂直平分線上時,求的值;

4)是否存在時刻,使以為直徑的圓與的邊相切?若存在,直接寫出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一臺實物投影儀,圖2是它的示意圖,折線OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AOOM,垂足為點O,且AO7cm,∠BAO160°,BCOM,CD8cm

將圖2中的BC繞點B向下旋轉(zhuǎn)45°,使得BCD落在BCD′的位置(如圖3所示),此時CD′⊥OMAD′∥OM,AD′=16cm,求點B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm

查看答案和解析>>

同步練習(xí)冊答案