【題目】如圖,正方形ABCD的邊長為13,以CD為斜邊向外作Rt△CDE.若點(diǎn)A到CE的距離為17,則CE=

【答案】12或5
【解析】解:作AF⊥CE于F,DM⊥AF于M,如圖所示:

則四邊形DEFM是矩形,AF=17,∠AMD=90°,

∴∠EDM=90°,

∵四邊形ABCD是正方形,

∴AD=CD=13,∠ADC=∠EDM=90°,

∴∠ADM=∠CDE,

在△ADM和△CDE中, ,

∴△ADM≌△CDE(AAS),

∴DM=DE,AM=CE,

∴四邊形DEFM是正方形,

∴DM=FM,

設(shè)AM=CE=x,則DM=FM=17﹣x,

在Rt△ADM中,由勾股定理得:x2+(17﹣x)2=132,

解得:x=12或x=5,

∴CE=12,或CE=5;

故答案為:12或5.

作AF⊥CE于F,DM⊥AF于M,由AAS證明△ADM≌△CDE,得出DM=DE,AM=CE,證出四邊形DEFM是正方形,得出DM=FM,設(shè)AM=CE=x,則DM=FM=17﹣x,在Rt△ADM中,由勾股定理得出方程,解方程即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+ x﹣2與x軸正半軸交于點(diǎn)A,點(diǎn)D(0,m)為y軸正半軸上一點(diǎn),連結(jié)AD并延長交拋物線于點(diǎn)E,若點(diǎn)C(4,n)在拋物線上,且CE∥x軸.
(1)求m,n的值;
(2)連結(jié)CD并延長交拋物線于點(diǎn)F,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BAC=90°,AB=4,AC=6,點(diǎn)DE分別是BCAD的中點(diǎn),AFBCCE的延長線于F.則四邊形AFBD的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線C1:y=a(x- 2+h分別與x軸、y軸交于點(diǎn)A(1,0)和點(diǎn)B(0,-2),將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AP.

(1)求點(diǎn)P的坐標(biāo)及拋物線C1的解析式;
(2)將拋物線C1先向左平移2個(gè)單位,再向上平移1個(gè)單位得到拋物線C2 , 請你判斷點(diǎn)P是否在拋物線C2上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校餐廳計(jì)劃購買12張餐桌和若干把餐椅,先從甲、乙兩個(gè)商場了解到:同一型號的餐桌報(bào)價(jià)每張均為200元,餐椅報(bào)價(jià)每把均為60元,甲商場規(guī)定:購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌、餐椅均按報(bào)價(jià)的八折銷售.

1)若學(xué)校計(jì)劃購買12張餐桌和12把餐椅,則到甲商場購買所需的費(fèi)用為 ;到乙商場購買所需的費(fèi)用為

2)若學(xué)校計(jì)劃購買 把餐椅,則到甲商場購買所需的費(fèi)用為 ;到乙商場購買所需的費(fèi)用為 ;

3)若學(xué)校計(jì)劃購進(jìn)20張餐桌和40把餐椅,請通過計(jì)算說明,到哪個(gè)商場購買合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14.動點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t(t >0)秒.

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示);

(2)動點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動,若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動多少秒時(shí)P、Q兩點(diǎn)相遇?

(3)MAP的中點(diǎn),NPB的中點(diǎn).點(diǎn)P在運(yùn)動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出相應(yīng)圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD,垂足為E,連接CO,AD,∠BAD=20°,則下列說法中正確的是( )

A.AD=2OB
B.CE=EO
C.∠OCE=40°
D.∠BOC=2∠BAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)多位正整數(shù),若它們各數(shù)位上的數(shù)字之和相等,則稱這兩個(gè)多位數(shù)互為“調(diào)和數(shù)”.例如:4976,因?yàn)?/span>4+9=7+6=13,所以4976互為“調(diào)和數(shù)”;又如:22518,因?yàn)?/span>2+2+5=1+8=9,所以22518互為“調(diào)和數(shù)”.

1362________互為“調(diào)和數(shù)”(寫出一個(gè)即可);

2)若兩位數(shù)75是一對“調(diào)和數(shù)”,且的十位數(shù)字是個(gè)位數(shù)字的2倍,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1);

(2)

(3);

(4);

(5)(2

(6);

(7)()();

(8);

(9);

(10)

查看答案和解析>>

同步練習(xí)冊答案