【題目】△ABC在直角坐標(biāo)系中的位置如圖,其中A點(diǎn)的坐標(biāo)是(﹣2,3)
(1)△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,請(qǐng)作出△A1B1C1,并寫出A點(diǎn)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(2)若△ABC經(jīng)過平移后A點(diǎn)的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)是(2,﹣1),請(qǐng)作△A2B2C2,并計(jì)算平移的距離.
【答案】(1)圖詳見解析,A1的坐標(biāo)為(3,2);(2)圖詳見解析,平移的距離為4.
【解析】
(1)分別作出三頂點(diǎn)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的對(duì)應(yīng)點(diǎn),再順次連接即可得;
(2)將三頂點(diǎn)分別向右平移4個(gè)單位,再向下平移4個(gè)單位得到對(duì)應(yīng)點(diǎn),繼而首順次連接即可得.
解:(1)分別作出A、B、C繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的A1、B1、C1,再順次連接A1B1、A1C1、B1C1如圖所示,△A1B1C1即為所求,
A點(diǎn)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(3,2);
(2)由點(diǎn)A(﹣2,3)平移到對(duì)應(yīng)點(diǎn)A2(2,﹣1)的平移規(guī)律為:向右平移4個(gè)單位,再向下平移4個(gè)單位
∴將點(diǎn)B和點(diǎn)C也向右平移4個(gè)單位,再向下平移4個(gè)單位得到B2、C2,連接A2B2、A2C2、B2C2,如圖所示,△A2B2C2即為所求,平移的距離AA2==4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,AC與BD相交于點(diǎn)O,連接CD
(1)求∠AOD的度數(shù);
(2)求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個(gè)倉(cāng)庫(kù)要向A、B兩地運(yùn)送水泥,已知甲庫(kù)可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫(kù)到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄“元/(噸、千米)”表示每噸水泥運(yùn)送1千米所需人民幣)(本題滿分10分)
路程/千米 | 運(yùn)費(fèi)(元/噸、千米) | |||
甲庫(kù) | 乙?guī)?/span> | 甲庫(kù) | 乙?guī)?/span> | |
A地 | 20 | 15 | 12 | 12 |
B地 | 25 | 20 | 10 | 8 |
(1)設(shè)甲庫(kù)運(yùn)往A地水泥噸,求總運(yùn)費(fèi)(元)關(guān)于(噸)的函數(shù)關(guān)系式;
(2)當(dāng)甲、乙兩庫(kù)各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,過點(diǎn)A作BD的平行線AE交CB的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=BC;
(2)過點(diǎn)C作CF⊥BD于點(diǎn)F,并延長(zhǎng)CF交AE于點(diǎn)G,連接OG.若BF=3,CF=6,求四邊形BOGE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,直線與x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),點(diǎn)B的橫坐標(biāo)為2.
圖1 圖2
(1)求A、C兩點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)D是直線AC上方拋物線上任意一點(diǎn),P為線段AC上一點(diǎn),且S△PCD=2S△PAD ,求點(diǎn)P的坐標(biāo);
(3)如圖2,另有一條直線y=-x與直線AC交于點(diǎn)M,N為線段OA上一點(diǎn),∠AMN=∠AOM.點(diǎn)Q為x軸負(fù)半軸上一點(diǎn),且點(diǎn)Q到直線MN和直線MO的距離相等,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a+b=1,ab=﹣1,設(shè)S1=a+b,S2=a2+b2,S3=a3+b3,…,Sn=an+bn
(1)計(jì)算S2.
(2)請(qǐng)閱讀下面計(jì)算S3的過程:
∵a+b=1,ab=﹣1
∴S3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×S2﹣(﹣1)=S2+1= .
你讀懂了嗎?請(qǐng)你先填空完成(2)中S3的計(jì)算結(jié)果,再用你學(xué)到的方法計(jì)算S4
(3)試寫出Sn﹣2,Sn﹣1,Sn三者之間的數(shù)量關(guān)系式(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計(jì)算S7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC邊于點(diǎn)D.以AB上一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A和點(diǎn)D.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°,設(shè)⊙O與AB邊的另一個(gè)交點(diǎn)為E,求線段BD,BE與劣弧所圍成的陰影部分的面積(結(jié)果保留根號(hào)和)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在平行四邊形ABCD中,DE⊥AB,BF⊥CD,垂足分別為E、F,求證:AE=CF;
(2)如圖(2),在平行四邊形ABCD中,AC、BD是兩條對(duì)角線,求證AC2+BD2=2(AB2+BC2)
(3)如圖(3),PQ是△PMN的中線,若PM=11,PN=13,MN=10,求出PQ的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com