【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標原點,CD垂直于x軸,D(5,4),AD=2.若動點E、F同時從點O出發(fā),E點沿折線OA→AD→DC運動,到達C點時停止;F點沿OC運動,到達C點時停止,它們運動的速度都是每秒1個單位長度.設E運動x秒時,△EOF的面積為y(平方單位),則y關于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

【答案】C
【解析】解:∵D(5,4),AD=2.

∴OC=5,CD=4,OA= =5,

∴運動x秒(x<5)時,OE=OF=x,

作EH⊥OC于H,AG⊥OC于點G,

∴EH∥AG,

∴△EHO∽△AGO,

,

即: ,

∴EH= x,

∴S△EOF= OFEH= ×x× x= x2,

故A、B選項錯誤;

當點F運動到點C時,點E運動到點A,此時點F停止運動,點E在AD上運動,△EOF的面積不變,

點在DC上運動時,如右圖,

EF=11﹣x,OC=5,

∴S△EOF= OCCE= ×(11﹣x)×5=﹣ x+ 是一次函數(shù),故C正確,

故選:C.

【考點精析】本題主要考查了函數(shù)的圖象的相關知識點,需要掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有A、B兩個轉(zhuǎn)盤,其中轉(zhuǎn)盤A被分成4等份,轉(zhuǎn)盤B被分成3等份,并在每一份內(nèi)標上數(shù)字,現(xiàn)甲、乙兩人同時各轉(zhuǎn)動其中一個轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當指針指在邊界線上時視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記為x,B轉(zhuǎn)盤指針指向的數(shù)字記為y,從而確定點P的坐標為P(x,y).

(1)請用列表或畫樹狀圖的方法寫出所有可能得到的點P的坐標;
(2)李剛為甲、乙兩人設計了一個游戲:記s=x+y.當s<6時,甲獲勝,否則乙獲勝.你認為這個游戲公平嗎?對誰有利?
(3)請你利用兩個轉(zhuǎn)盤,設計一個公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等,交易其一,金輕十三兩,問金、銀各重幾何?”意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等,兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計),問黃金、白銀每枚各重多少兩?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】好學小東同學,在學習多項式乘以多項式時發(fā)現(xiàn):(x+4)(2x+5)(3x-6)的結果是一個多項式,并且最高次項為:x2x3x3x3,常數(shù)項為:4×5×(-6)=-120,那么一次項是多少呢?要解決這個問題,就是要確定該一次項的系數(shù).根據(jù)嘗試和總結他發(fā)現(xiàn):一次項系數(shù)就是:×5×(-6)+2×(-6)×4+3×4×5-3,即一次項為-3x

請你認真領會小東同學解決問題的思路,方法,仔細分析上面等式的結構特征.結合自己對多項式乘法法則的理解,解決以下問題.

(1)計算(x+2)(3x+1)(5x-3)所得多項式的一次項系數(shù)為_____

(2)(x+6)(2x+3)(5x-4)所得多項式的二次項系數(shù)為_______

(3)若計算(x2+x+1)(x2-3x+a)(2x-1)所得多項式不含一次項,求a的值;

(4)(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,則a2020=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了積極準備新冠肺炎疫情下的春季復課開學,通過網(wǎng)絡開展了學習新冠肺炎疫情防控知識競賽,夠買了若干筆袋和筆記本作為獎品在學生返校后發(fā)放.購買2個筆袋和1個筆記本需花25元,購買3個筆袋和2個筆記本需花40元.

(1)求筆袋和筆記本的單價各是多少元?

(2)學校準備購買筆袋和筆記本共計180個,甲、乙兩商場以同樣價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案,在甲商場累計購物超過1000元后,超出1000元的部分按90%收費,在乙商場累計購物超過500元后,超出500元的部分按95%收費,經(jīng)過預算此次購物超過了1000元,求學校需要至少購買多少個筆袋,才能使到甲商場購物更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[問題情境]勾股定理是一條古老的數(shù)學定理,它有很多種證明方法,我國漢代數(shù)學家趙爽根據(jù)弦圖,利用面積法進行證明.著名數(shù)學家華羅庚曾提出把“數(shù)形關系(勾股定理)”帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言.

[定理表述]請你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號語言敘述).

[嘗試證明]以圖(1)中的直角三角形為基礎,可以構造出以a、b為底,以a+b為高的直角梯形(如圖(2)),請你利用圖(2)驗證勾股定理.

[知識拓展]利用圖(2)中的直角梯形,我們可以證明.其證明步驟如下:

BC=a+b,AD=________,

在直角梯形ABCD中,有BC________AD(填大小關系),即________,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向營運,向東為正,向西為負,行車里程(單位:km),依先后次序記錄如下:+10,﹣3、﹣4、+4、﹣9、+6、﹣4、﹣6、﹣4、+10

1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?

2)若平均每千米的價格為2.4元,司機一個下午的營業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,O為原點.點A在x軸的正半軸上,點B在y軸的正半軸上,tan∠OAB=2.二次函數(shù)y=x2+mx+2的圖象經(jīng)過點A,B,頂點為D.

(1)求這個二次函數(shù)的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置.將上述二次函數(shù)圖象沿y軸向上或向下平移后經(jīng)過點C.請直接寫出點C的坐標和平移后所得圖象的函數(shù)解析式;
(3)設(2)中平移后所得二次函數(shù)圖象與y軸的交點為B1 , 頂點為D1 . 點P在平移后的二次函數(shù)圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l1yk1x+2x軸、y軸分別交于點A、B兩點,OAOB,直線l2yk2x+b經(jīng)過點C1,﹣),與x軸、y軸和線段AB分別交于點E、FD三點.

1)求直線l1的解析式;

2)如圖①:若ECED,求點D的坐標和BFD的面積;

3)如圖②:在坐標軸上是否存在點P,使PCD是以CD為底邊的等腰直角三角形,若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案