【題目】如圖,為正三角形,的角平分線,也是正三角形,下列結(jié)論:①:②:③,其中正確的有________(填序號).

【答案】①②③

【解析】

由等邊三角形的性質(zhì)可得AE=AD,∠CAD=BAD=30°,ADBC,可得∠BAE=BAD=30°,且AE=AD,可得EF=DF,“SAS”可證ABE≌△ABD,可得BE=BD,即可求解.

解:∵△ABCADE是等邊三角形,AD為∠BAC的角平分線,
AE=AD,∠CAD=BAD=30°,ADBC,
∴∠BAE=BAD=30°,且AE=AD
EF=DF
AE=AD,∠BAE=BAD,AB=AB
∴△ABE≌△ABDSAS),
BE=BD
∴正確的有①②③
故答案為:①②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,在平面直角坐標(biāo)系中,A(3,4),B(0,2).

(1)OAB繞O點旋轉(zhuǎn)180°得到OA1B1,請畫出OA1B1,并寫出A1,B1的坐標(biāo);

(2)判斷以A,B,A1,B1為頂點的四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年深圳市創(chuàng)建文明城市期間,某區(qū)教育局為了了解全區(qū)中學(xué)生對課外體育運動項目的喜歡程度,隨機抽取了某校八年級部分學(xué)生進行問卷調(diào)查(每人限選一種體育運動項目).如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:

1)這次活動一共調(diào)查了 名學(xué)生;

2)在扇形統(tǒng)計圖中,跳繩所在扇形圓心角等于 度;

3)補全條形統(tǒng)計圖;

4)若該校有學(xué)生2000人, 請你估計該校喜歡足球的學(xué)生約有 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五四青年節(jié)期間,校團委對團員參加活動情況進行表彰,計劃分為優(yōu)秀獎和貢獻獎,為此聯(lián)系印刷公司設(shè)計了兩種獎狀,A,B兩家公司都為學(xué)校提出了相同規(guī)格和單價的兩種獎狀,其中優(yōu)秀獎的獎狀6/張,貢獻獎的獎狀5/張,經(jīng)過協(xié)商,A公司的優(yōu)惠條件是:兩種獎狀都打八折,但要收制版費50元;B公司的優(yōu)惠條件是:兩種獎狀都打九折;根據(jù)學(xué)校要求,優(yōu)秀獎的個數(shù)是貢獻獎的2倍還多10個,如果設(shè)貢獻獎的個數(shù)是x

(1)分別寫出校團委購買A,B兩家印刷廠所需要的總費用y1(元)和y2(元)與貢獻獎個數(shù)x之間的函數(shù)關(guān)系式;

(2)校團委選擇哪家印刷公司比較合算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線y=x+2分別與x軸,y軸交于點M、N,邊長為1的正方形OABC的一個頂點O在坐標(biāo)系原點,直線ANMC交于點P,若正方形繞點O旋轉(zhuǎn)一周,則點P到點0,1)長度的最小值是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+cx軸交于點A,B(AB的左側(cè)),拋物線的對稱軸為直線x=1,AB=4.

(1)求拋物線的表達式;

(2)拋物線上有兩點M(x1,y1)和N(x2,y2),若x11,x21,x1+x22,試判斷y1y2的大小,并說明理由;

(3)平移該拋物線,使平移后的拋物線經(jīng)過點O,且與x軸交于點D,記平移后的拋物線頂點為點P

①若△ODP是等腰直角三角形,求點P的坐標(biāo);

②在①的條件下,直線x=m(0m3)分別交線段BP、BC于點E、F,且△BEF的面積:△BPC的面積=2:3,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(ay1)(a+2,y2)都在反比例函數(shù)yk0)的圖象上,若y1y2,則a的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)的圖象分別交于C、D兩點,點D(2,﹣3),點B是線段AD的中點.

(1)求一次函數(shù)y1=k1x+b與反比例函數(shù)的解析式;

(2)求COD的面積;

(3)直接寫出y1y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小芳去商店購買甲、乙兩種商品. 現(xiàn)有如下信息:

信息1:甲、乙兩種商品的進貨單價之和是5元,按零售單價購買甲商品3件和乙商品2件,共付了19元;

信息2:甲商品零售單價比甲進貨單價多1元,乙商品零售單價比乙進貨單價的2倍少1元.

請根據(jù)以上信息,解答下列問題:

(1)甲、乙兩種商品的進貨單價各多少元?

(2)若小芳準(zhǔn)備用不超過400元錢購買100件甲、乙兩種商品,其中甲種商品至少購買多少件?

查看答案和解析>>

同步練習(xí)冊答案