【題目】若關(guān)于x的多項(xiàng)式x2﹣mx+n能因式分解為:(x﹣2)(x+3),則m+n=_____
【答案】-7
【解析】
化簡(jiǎn)因式分解的式子,然后可以求出m和n的值,即可求出m+n的值.
解:∵多項(xiàng)式x2﹣mx+n能因式分解為(x﹣2)(x+3),
∴x2﹣mx+n=x2+x﹣6,
∴m=﹣1,n=﹣6,
∴m+n=﹣1﹣6=﹣7.
故答案是:﹣7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)L1:y=ax2﹣2ax+a+3(a>0)和二次函數(shù)L2:y=﹣a(x+1)2+1
(a>0)圖象的頂點(diǎn)分別為M,N,與y軸分別交于點(diǎn)E,F.
(1)函數(shù)y=ax2﹣2ax+a+3(a>0)的最小值為______,當(dāng)二次函數(shù)L1,L2的y值同時(shí)隨著x的增大而減小時(shí),x的取值范圍是______.
(2)當(dāng)EF=MN時(shí),求a的值,并判斷四邊形ENFM的形狀(直接寫(xiě)出,不必證明).
(3)若二次函數(shù)L2的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時(shí),求方程﹣a(x+1)2+1=0的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形的兩邊長(zhǎng)分別為3和5,第三邊長(zhǎng)是偶數(shù),則第三邊長(zhǎng)可以是( )
A.2
B.3
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2+a3=a5
B.(﹣2a2)3=﹣6a6
C.(2a+1)(2a﹣1)=2a2﹣1
D.(2a3﹣a2)÷a2=2a﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)試銷(xiāo)一種新款襯衫,一周內(nèi)銷(xiāo)信情況如表所示:
型號(hào)(厘米) | 38 | 39 | 40 | 41 | 42 | 43 |
數(shù)量(件) | 25 | 30 | 36 | 50 | 28 | 8 |
商場(chǎng)經(jīng)理要了解哪種型號(hào)最暢銷(xiāo),則上述數(shù)據(jù)的統(tǒng)計(jì)量中,對(duì)商場(chǎng)經(jīng)理來(lái)說(shuō)最具有意義的是( )
A.平均數(shù)
B.眾數(shù)
C.中位數(shù)
D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋子中裝有三張分別標(biāo)有1、2、3數(shù)字的卡片(卡片除數(shù)字外完全相同).
(1)從袋中任意抽取一張卡片,則抽出的是偶數(shù)的概率為 ;
(2)從袋中任意抽取二張卡片,求被抽取的兩張卡片構(gòu)成兩位數(shù)是奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某正方形的面積是(16-8x+x2)cm2(x>4),則該正方形的周長(zhǎng)是
A. (4-x)cm B. (x-4)cm
C. (16-4x)cm D. (4x-16)cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△OAB的頂角∠AOB=30°,點(diǎn)B在x軸上,腰OA=4
(1)B點(diǎn)得坐標(biāo)為: ;
(2)畫(huà)出△OAB關(guān)于y軸對(duì)稱(chēng)的圖形△OA1B1(不寫(xiě)畫(huà)法,保留畫(huà)圖痕跡),求出A1與B1的坐標(biāo);
(3)求出經(jīng)過(guò)A1點(diǎn)的反比例函數(shù)解析式.(注:若涉及無(wú)理數(shù),請(qǐng)用根號(hào)表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com