【題目】某公司共有A、B、C三個部門,根據(jù)每個部門的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤繪制成如圖的統(tǒng)計表和扇形圖:
各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計表
部門 | 員工人數(shù) | 每人所創(chuàng)的年利潤/萬元 |
A | 5 | 20 |
B | b | 18 |
C | c | 15 |
(1)①在扇形圖中,a= ,C部門所對應(yīng)的圓心角的度數(shù)為 .
②在統(tǒng)計表中,b= ,c= .
(2)求這個公司平均每人所創(chuàng)年利潤.
【答案】(1)①25、108°;②9、6;(2)這個公司平均每人所創(chuàng)年利潤為17.6(萬元).
【解析】
(1)①根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進行計算即可;②先求得A部門的員工人數(shù)所占的百分比,進而得到各部門的員工總?cè)藬?shù),據(jù)此可得B,C部門的人數(shù);
(2)根據(jù)總利潤除以總?cè)藬?shù),即可得到這個公司平均每人所創(chuàng)年利潤.
解:(1)①在扇形圖中,a=100﹣45﹣30=25,C部門所對應(yīng)的圓心角的度數(shù)為360 ×30%=108 ,
故答案為:25、108 .
②∵總?cè)藬?shù)為5÷25%=20人,
∴b=20×45%=9、c=20×30%=6,
故答案為:9、6;
(2)這個公司平均每人所創(chuàng)年利潤為=17.6(萬元).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的直徑,是上半圓的弦,過點作的切線交的延長線于點,過點作切線的垂線,垂足為,且與交于點,設(shè),的度數(shù)分別是.
用含的代數(shù)式表示,并直接寫出的取值范圍;
連接與交于點,當點是的中點時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】文明交流互鑒是推動人類文明進步和世界和平發(fā)展的重要動力.2019年5月“ 亞洲文明對話大會”在北京成功舉辦,引起了世界人民的極大關(guān)注.某市一研究機構(gòu)為了了解10~60歲年齡段市民對本次大會的關(guān)注程度,隨機選取了100名年齡在該范圍內(nèi)的市民進行了調(diào)查,并將收集到的數(shù)據(jù)制成了尚不完整的頻數(shù)分布表、頻數(shù)分布直方圖和扇形統(tǒng)計圖,如下所示:
(1)請直接寫出_______,_______,第3組人數(shù)在扇形統(tǒng)計圖中所對應(yīng)的圓心角是_______度.
(2)請補全上面的頻數(shù)分布直方圖.
(3)假設(shè)該市現(xiàn)有10~60歲的市民300萬人,問40~50歲年齡段的關(guān)注本次大會的人數(shù)約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為5的⊙中,弦,是弦所對的優(yōu)弧上的動點,連接,過點作的垂線交射線于點,當是以為腰的等腰三角形時,線段的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:已知點是三角形邊上的一點(頂點除外),若它到三角形一條邊的距離等于它到三角形的一個頂點的距離,則我們把點叫做該三角形的等距點.
(1)如圖1:中,,,,在斜邊上,且點是的等距點,試求的長;
(2)如圖2,中,,點在邊上,,為中點,且.
①求證:的外接圓圓心是的等距點;②求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的頂點為A(﹣2,0),且經(jīng)過點B(﹣5,9),與y軸交于點C,連接AB,AC,BC.
(1)求該拋物線對應(yīng)的函數(shù)表達式;
(2)點P為該拋物線上點A與點B之間的一動點.
①若S△PAB=S△ABC,求點P的坐標.
②如圖②,過點B作x軸的垂線,垂足為D,連接AP并延長,交BD于點M.連接BP并延長,交AD于點N.試說明DN(DM+DB)為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進“園林城市”建設(shè),今春種植了四類花苗,園林部門從種植的這批花苗中隨機抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經(jīng)統(tǒng)計這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問題:
(1)扇形統(tǒng)計圖中玉蘭所對的圓心角為 ,并補全條形統(tǒng)計圖;
(2)該區(qū)今年共種植月季8000株,成活了約 株;
(3)園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一種折疊臺燈,將其放置在水平桌面上,圖2是其簡化示意圖,測得其燈臂長為燈翠長為,底座厚度為根據(jù)使用習慣,燈臂的傾斜角固定為,
(1)當轉(zhuǎn)動到與桌面平行時,求點到桌面的距離;
(2)在使用過程中發(fā)現(xiàn),當轉(zhuǎn)到至時,光線效果最好,求此時燈罩頂端到桌面的高度(參考數(shù)據(jù):,結(jié)果精確到個位).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學發(fā)現(xiàn)當射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當AM∥BN時:
(1)點點發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32,求AQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com