【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于AB兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

【答案】1)y=﹣x+y;(2)12;(3) x<﹣20<x<4.

【解析】

(1)將點(diǎn)A坐標(biāo)代入解析式,可求解析式;(2)一次函數(shù)和反比例函數(shù)解析式組成方程組,求出點(diǎn)B坐標(biāo),即可求ABF的面積;(3)直接根據(jù)圖象可得.

1)∵一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk≠0)圖象交于A(﹣3,2)、B兩點(diǎn),

3=﹣×(﹣2)+bk=﹣2×3=﹣6

b,k=﹣6

∴一次函數(shù)解析式y=﹣,反比例函數(shù)解析式y.

(2)根據(jù)題意得:

解得: ,

SABF×4×(4+2)=12

(3)由圖象可得:x<﹣20<x<4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)己知,如圖1,ABC是O的內(nèi)接正三角形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.

(2)如圖2,四邊形ABCD是O的內(nèi)接正方形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.

(3)如圖3,六邊形ABCDEF是O的內(nèi)接正六邊形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測(cè)得點(diǎn)B和點(diǎn)C的仰角分別是45°65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)P(m,4)在反比例函數(shù)y=﹣的圖象上,正比例函數(shù)的圖象經(jīng)過點(diǎn)P和點(diǎn)Q(6,n).

(1)求正比例函數(shù)的解析式;

(2)P、Q兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三邊分別為6cm8cm、10cm,則這個(gè)三角形內(nèi)切圓的半徑是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),為等腰三角形,,點(diǎn)是底邊上的一個(gè)動(dòng)點(diǎn),.

1)用表示四邊形的周長(zhǎng)為  ;

2)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形,請(qǐng)說明理由;

3)如果不是等腰三角形圖(2),其他條件不變,點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線與反比例函數(shù)k0)的圖象交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)Bx軸正半軸上一點(diǎn),且ABOA

1)求反比例函數(shù)的解析式;

2)求點(diǎn)B的坐標(biāo);

3)先在∠AOB的內(nèi)部求作點(diǎn)P,使點(diǎn)P到∠AOB的兩邊OAOB的距離相等,且PA=PB;再寫出點(diǎn)P的坐標(biāo).(不寫作法,保留作圖痕跡,在圖上標(biāo)注清楚點(diǎn)P

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線(k為常數(shù)).

(1)若拋物線經(jīng)過點(diǎn)(1,k2),求k的值;

(2)若拋物線經(jīng)過點(diǎn)(2k,y1)和點(diǎn)(2,y2),且y1>y2,求k的取值范圍;

(3)若將拋物線向右平移1個(gè)單位長(zhǎng)度得到新拋物線,當(dāng)1≤x≤2時(shí),新拋物線對(duì)應(yīng)的函數(shù)有最小值,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案