【題目】京滬高速公路全長(zhǎng)1262千米,汽車沿京滬高速公路從上海駛往北京.

(1)那么汽車行駛?cè)趟钑r(shí)間t(小時(shí))與行駛的平均速度v(千米/小時(shí))之間有怎樣的關(guān)系?tv的什么函數(shù)?

(2)若平均速度為100千米/小時(shí),大約需幾個(gè)小時(shí)跑完全程?

(3)若跑完全程控制在10小時(shí)之內(nèi),那么車速應(yīng)控制在什么范圍內(nèi)?

【答案】(1)t,反比例函數(shù);(2)13小時(shí);(3)平均速度不低于126.2千米/小時(shí).

【解析】試題分析:行程問題.主要是根據(jù)路程=速度時(shí)間這個(gè)關(guān)系式,并結(jié)合已知條件列出等量關(guān)系式,最后解方程即可求解.如本題中,列出等量關(guān)系式結(jié)合已知條件,即可解決第(2)、(3).

試題解析:(1)由路程=速度時(shí)間,

tv的反比例函數(shù)

(2)千米/時(shí)代入上式得

(3)當(dāng)時(shí)

解得

經(jīng)檢驗(yàn)是分式方程的根.

:(1)vt的函數(shù)關(guān)系式為

(2)當(dāng)平均速度為100千米/時(shí),大約需13小時(shí)跑完全程;

(3)當(dāng)跑完全程控制在10小時(shí)之內(nèi),那么車速應(yīng)控制在126.2(km/h)以上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)社會(huì)實(shí)踐小組去某商場(chǎng)調(diào)查商品的銷售情況,了解到該商場(chǎng)以每件80元的價(jià)格購(gòu)進(jìn)了某品牌襯衫500件,并以每件120元的價(jià)格銷售了400件,商場(chǎng)準(zhǔn)備采取促銷措施,將剩下的襯衫降價(jià)銷售.

1)每件襯衫降價(jià)多少元時(shí),銷售完這批襯衫正好達(dá)到盈利45%的預(yù)期目標(biāo)?

2)在(1)的條件下,某公司給員工發(fā)福利,在該商場(chǎng)促銷錢購(gòu)買了20件該品牌的襯衫發(fā)給員工,后因?yàn)橛行聠T工加入,又要購(gòu)買5件該襯衫,購(gòu)買這5件襯衫時(shí)恰好趕上該商場(chǎng)進(jìn)行促銷活動(dòng),求該公司購(gòu)買這25件襯衫的平均價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,給出下列的條件,能判斷它是平行四邊形的是( )

A. AB//CD, AD=BCB. B=∠C,∠A=∠D

C. AB=AD, BC=CDD. AB=CD, AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:(﹣2010)0+﹣2sin60°﹣3tan30°+;

(2)解方程:x2﹣6x+2=0;

(3)已知關(guān)于x的一元二次方程x2﹣mx﹣2=0.

若﹣1是方程的一個(gè)根,求m的值和方程的另一根;

證明:對(duì)于任意實(shí)數(shù)m,函數(shù)y=x2﹣mx﹣2的圖象與x軸總有兩個(gè)交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠B=AFE,EA是∠BEF的平分線,求證:

(1)ABE≌△AFE;

(2)FAD=CDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l為正比例函數(shù)y=x的圖象,點(diǎn)A1的坐標(biāo)為(1,0),過點(diǎn)A1x軸的垂線交直線l于點(diǎn)D1,以A1D1為邊作正方形A1B1C1D1;過點(diǎn)C1作直線l的垂線,垂足為A2,交x軸于點(diǎn)B2,以A2B2為邊作正方形A2B2C2D2;過點(diǎn)C2x軸的垂線,垂足為A3,交直線l于點(diǎn)D3,以A3D3為邊作正方形A3B3C3D3,…,按此規(guī)律操作下所得到的正方形AnBnCnDn的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x+2的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1.過點(diǎn)A作AC⊥y軸交反比例函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接BC.

(1)求反比例函數(shù)的表達(dá)式.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過點(diǎn)O作直線EFBD,且交AD于點(diǎn)E,交BC于點(diǎn)F,連接BEDF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數(shù).

2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2G,I分別在BF,BE邊上,且BGBI,連接GD,HGD的中點(diǎn),連接FH,并延長(zhǎng)FHED于點(diǎn)J,連接IJ,IH,IF,IG.試探究線段IHFH之間滿足的關(guān)系,并說明理由;

3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足ABAD時(shí),點(diǎn)E是對(duì)角線AC上一點(diǎn),連接DE,作EFDE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請(qǐng)直接寫出線段AGGE,EC三者之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線y=﹣x2+x+4經(jīng)過A、B兩點(diǎn).

(1)寫出點(diǎn)A、點(diǎn)B的坐標(biāo);

(2)若一條與y軸重合的直線l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,分別交線段OA、CA和拋物線于點(diǎn)E、M和點(diǎn)P,連接PA、PB.設(shè)直線l移動(dòng)的時(shí)間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;

(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案