【題目】如圖,在△ABC中,AB=AC,D是BC上任一點(diǎn),AD=AE且∠BAC=∠DAE.
(1)若ED平分∠AEC,求證:CE∥AD;
(2)若∠BAC=90°,且D在BC中點(diǎn)時(shí),試判斷四邊形ADCE的形狀,并說明你的理由.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)根據(jù)等邊對(duì)等角得到∠ADE=∠AED,根據(jù)角平分線的性質(zhì)得到∠DEC=∠AED,等量代換得到∠ADE=∠DEC,根據(jù)平行線的判定定理即可證明.
(2)根據(jù)∠ADC+∠DAE=180°,得到AE∥CD,再證明AE=CD,即可證明四邊形ADCE是平行四邊形,根據(jù)∠ADC=90°,AD=CD,即可證明四邊形ADCE是正方形.
解:(1)證明:∵AD=AE
∴∠ADE=∠AED
又∵ED平分∠AEC
∴∠DEC=∠AED
∴∠ADE=∠DEC
∴CE∥AD
(2)四邊形ADCE是正方形,理由如下:
∵AB=AC,D是BC的中點(diǎn)
∴AD⊥BC,即∠ADC=90°
又∵∠DAE=∠BAC=90°
∴∠ADC+∠DAE=180°
∴AE∥CD
又∵∠BAC=90°且D是BC的中點(diǎn)
∴AD=CD
∴AE=AD
∴AE=CD
∴四邊形ADCE是平行四邊形
∵∠ADC=90°,AD=CD
四邊形ADCE是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】劉老師在一節(jié)習(xí)題課上出示了下面一張幻燈片
解分式方程的基本思想是“____________”,把分式方程變?yōu)檎椒匠糖蠼猓夥质椒匠桃欢ㄗ⒁庖?/span>__________.
小明同學(xué)的作業(yè)如下:
解:去分母得, (第一部)
移項(xiàng),合并同類項(xiàng)得 (第二步)
經(jīng)檢驗(yàn)時(shí), (第三步)
所以原分式方程的解為 (第四步)
解分式方程的基本思想是“____________”,把分式方程變?yōu)檎椒匠糖蠼猓夥质椒匠桃欢ㄗ⒁庖?/span>__________.
小明同學(xué)的作業(yè)如下:
解:去分母得, (第一部)
移項(xiàng),合并同類項(xiàng)得 (第二步)
經(jīng)檢驗(yàn)時(shí), (第三步)
所以原分式方程的解為 (第四步)
(1)請(qǐng)將幻燈片中的劃線部分填上(溫馨提示有2個(gè)空呦!)
(2)小明解答過程是從第_______步開始出錯(cuò)的,其錯(cuò)誤原因是______________;
(3)請(qǐng)你寫出此題正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則的值為( )
A. 3 B. 4 C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在星期一的第八節(jié)課,我校體育老師隨機(jī)抽取了九年級(jí)的總分學(xué)生進(jìn)行體育中考的模擬測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,按得分劃分成A、B、C、D、E、F六個(gè)等級(jí),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
等級(jí) | 得分x(分) | 頻數(shù)(人) |
A | 95<x≤100 | 4 |
B | 90<x≤95 | m |
C | 85<x≤90 | n |
D | 80<x≤85 | 24 |
E | 75<x≤80 | 8 |
F | 70<x≤75 | 4 |
請(qǐng)你根據(jù)圖表中的信息完成下列問題:
1)本次抽樣調(diào)查的樣本容量是 .其中m= ,n= .
2)扇形統(tǒng)計(jì)圖中,求E等級(jí)對(duì)應(yīng)扇形的圓心角α的度數(shù);
3)我校九年級(jí)共有700名學(xué)生,估計(jì)體育測(cè)試成績(jī)?cè)?/span>A、B兩個(gè)等級(jí)的人數(shù)共有多少人?
4)我校決定從本次抽取的A等級(jí)學(xué)生(記為甲、乙、丙、。┲,隨機(jī)選擇2名成為學(xué)校代表參加全市體能競(jìng)賽,請(qǐng)你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動(dòng)點(diǎn)P在直線AB上方,且滿足S△PABS:矩形ABCD=1:3,則使△PAB為直角三角形的點(diǎn)P有( )個(gè)
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣闊無垠的太空中有無數(shù)顆恒星,其中離太陽系最近的一顆恒星稱為“比鄰星”,它距離太陽系約4.2光年.光年是天文學(xué)中一種計(jì)量天體時(shí)空距離的長度單位,1光年約為9500000000000千米.則“比鄰星”距離太陽系約為( )
A. 千米B. 千米C. 千米D. 千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的半圓中,P是直徑AB上一動(dòng)點(diǎn),過點(diǎn)P作PC⊥AB于點(diǎn)P,交半圓于點(diǎn)C,連接AC.已知AB=6cm,設(shè)A,P兩點(diǎn)間的距離為xcm,P,C兩點(diǎn)間的距離為y1cm,A,C兩點(diǎn)間的距離為y2cm.
小聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小聰?shù)奶骄窟^程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了y1,y2與x的幾組對(duì)應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 2.83 | 2.24 | 0 | |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1,y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△APC有一個(gè)角是30°時(shí),AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)原計(jì)劃修建一條長100千米的公路,由于實(shí)際情況,進(jìn)行了兩次改道,每次改道以相同的百分率增加修路長度,使得實(shí)際修建長度為121千米,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍。
(1)求兩次改道的平均增長率;
(2)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?
(3)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過42.4萬元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=40°,點(diǎn)D、點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時(shí)出發(fā),在線段BC上作等速運(yùn)動(dòng),到達(dá)C點(diǎn)、B點(diǎn)后運(yùn)動(dòng)停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù);
拓展:若△ABD的外心在其內(nèi)部時(shí),求∠BDA的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com