【題目】如圖,點(diǎn)C在以AB為直徑的上,點(diǎn)D是半圓AB的中點(diǎn),連接AC,BC,AD,BD,過(guò)點(diǎn)D作交CB的延長(zhǎng)線于點(diǎn)H.
(1)求證:直線DH是的切線;
(2)若,,求AD,BH的長(zhǎng).
【答案】(1)見(jiàn)解析;(2),
【解析】
(1)連接,先根據(jù)是的直徑,D是半圓的中點(diǎn),得出,再根據(jù),得出,即可證明;
(2)連接,先證明是等腰直角三角形,求出AD的長(zhǎng),再根據(jù)AB,BC的長(zhǎng)求出AC,根據(jù)四邊形是圓內(nèi)接四邊形,推出,證明,得出,即可求出答案.
證明:(1)連接,
∵是的直徑,D是半圓的中點(diǎn),
∴,
∵,
∴,
∴,
∴是的切線;
(2)連接,
∵是的直徑,
∴,
又D是半圓的中點(diǎn),
∴,
∴,
∴是等腰直角三角形,
∵,
∴,
∵,
∴在中,
∵四邊形是圓內(nèi)接四邊形,
∵,
∵,
∴,
由(1)知∠,
∴,
∵,
∴,
∴,
∴,
∴,即,
解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BM切⊙O于點(diǎn)B,點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與A,B兩點(diǎn)重合),連接AP,過(guò)點(diǎn)O作OQ∥AP交BM于點(diǎn)Q,過(guò)點(diǎn)P作PE⊥AB于點(diǎn)C,交QO的延長(zhǎng)線于點(diǎn)E,連接PQ,OP,AE.
(1)判斷直線PQ與⊙O的關(guān)系;
(2)若直徑AB的長(zhǎng)為4.當(dāng)四邊形AEOP為菱形時(shí),求PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位在疫情期間用元購(gòu)進(jìn)兩種口罩個(gè),購(gòu)買種口罩與購(gòu)買種口罩的費(fèi)用相同,且種口罩的單價(jià)是種口罩單價(jià)的倍.
求兩種口罩的單價(jià)各是多少元?
若計(jì)劃用不超過(guò)元的資金再次購(gòu)進(jìn)兩種口罩共個(gè),已知兩種口罩的進(jìn)價(jià)不變,求種口罩最多能購(gòu)買多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E分別是線段BC、AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:△BDE≌△FAE;
(2)求證:四邊形ADCF為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)A(1,0),B(3,0),C(0,6)三點(diǎn).
(1)求拋物線的解析式.
(2)拋物線的頂點(diǎn)M與對(duì)稱軸l上的點(diǎn)N關(guān)于x軸對(duì)稱,直線AN交拋物線于點(diǎn)D,直線BE交AD于點(diǎn)E,若直線BE將△ABD的面積分為1:2兩部分,求點(diǎn)E的坐標(biāo).
(3)P為拋物線上的一動(dòng)點(diǎn),Q為對(duì)稱軸上動(dòng)點(diǎn),拋物線上是否存在一點(diǎn)P,使A、D、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖像過(guò)點(diǎn),且與軸交于點(diǎn),點(diǎn)在該拋物線的對(duì)稱軸上,若是以為直角邊的直角三角形,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,矩形ABCD的邊BC在軸上,頂點(diǎn),連接AC按照下列方法作圖:(1)以點(diǎn)C為圓心,適當(dāng)?shù)拈L(zhǎng)度為半徑畫(huà)弧分別交CA,CD于點(diǎn)E,F;(2)分別以點(diǎn)E,F為圓心,大于的長(zhǎng)為半徑畫(huà)弧交于點(diǎn)G;(3)作射線CG交AD于H,則點(diǎn)H的橫坐標(biāo)為( )
A.6B.4C.3D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為一個(gè)矩形紙片,,.動(dòng)點(diǎn)自點(diǎn)出發(fā)沿方向運(yùn)動(dòng)至點(diǎn)后停止,以直線為軸翻折,點(diǎn)落在點(diǎn)的位置.設(shè),與原紙片重疊部分的面積為.
(1)當(dāng)為何值時(shí),直線過(guò)點(diǎn);
(2)當(dāng)為何值時(shí),直線過(guò)的中點(diǎn);
(3)求出與的函數(shù)表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com