【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于﹣1的實數(shù)根.其中正確的結(jié)論有( )
A. ①③ B. ②③ C. ①④ D. ②④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用時間,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
(1)設(shè)江水的流速為千米/時,填空:輪船順流航行速度為_________千米/時,逆流航行速度為_________千米/時,順流航行100千米所用時間為_________小時,逆流航行60千米所用時間為_________小時.
(2)列出方程,并求出問題的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展我市旅游經(jīng)濟,丹東天橋溝景區(qū)對門票采用動態(tài)的售票方法吸引游客,規(guī)定:門票定價為100元/人,非節(jié)假日打折售票,節(jié)假日按團隊人數(shù)分段定價售票,即10人以下(含10人)的團隊按原價售票;超過10人的團隊,其中10人仍按原價售票,超過10人部分的游客打折售票。設(shè)某旅游團人數(shù)為人,非節(jié)假日購票款為(元),節(jié)假日購票款為(元),、與之間的函數(shù)圖象如圖所示.
(1)觀察圖象可知:_______,__________;
(2)直接寫出和的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍);
(3)導(dǎo)游小王10月1日帶團,10月20日(非節(jié)假日)帶團都到天橋溝景區(qū)旅游,共付門票款4600元,、兩個團隊合計60人,求、兩個團隊各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:
①abc>0;②3a+c<0;③a+b≥am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.
其中正確的有( 。﹤.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:能夠成為直角三角形三條邊長的三個正整數(shù)a,b,c,稱為勾股數(shù).世界上第一次給出勾股數(shù)通解公式的是我國古代數(shù)學(xué)著作《九章算術(shù)》,其勾股數(shù)組公式為: 其中m>n>0,m,n是互質(zhì)的奇數(shù).
應(yīng)用:當n=1時,求有一邊長為5的直角三角形的另外兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:(1)b2﹣4ac>0;(2)abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正確的結(jié)論的個數(shù)是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的位置如圖所示.
(1)分別寫出以下頂點的坐標:A( , );B( , ) ;C( , ).
(2)頂點A關(guān)于x軸對稱的點A′的坐標( , ),頂點C關(guān)于y軸對稱的點C′的坐標( , ).
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)村盛產(chǎn)葡萄,果大味美,甲、乙兩個葡萄采摘園為吸引游客,在銷售價格一樣的基礎(chǔ)上分別推出優(yōu)惠方案,甲采摘園的優(yōu)惠方案:游客進園需購買門票,采摘的所有葡萄按六折優(yōu)惠.乙采摘園的優(yōu)惠方案:游客無需買票,采摘葡萄超過一定數(shù)量后,超過的部分打折銷售.活動期間,某游客的葡萄采摘量為xkg,若在甲采摘園所需總費用為y甲元,若在乙采摘園所需總費用為y乙元,y甲、y乙與x之間的函數(shù)圖象如圖所示,則下列說法錯誤的是()
A.甲采摘園的門票費用是60元
B.兩個采摘園優(yōu)惠前的葡萄價格是30元/千克
C.乙采摘園超過10kg后,超過的部分價格是12元/千克
D.若游客采摘18kg葡萄,那么到甲或乙兩個采摘園的總費用相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,E是BC邊的中點,連接AE,F為CD邊上一點,且滿足∠DFA=2∠BAE.
(1)若∠D=105°,∠DAF=35°.求∠FAE的度數(shù);
(2)求證:AF=CD+CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com