【題目】如圖所示,在正方形ABCD中,點(diǎn)E是BC邊上一點(diǎn),且BE:EC=2:1,AE與BD交于點(diǎn)F,則△AFD與四邊形DFEC的面積之比是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D在AB上,以BD為直徑的⊙O切AC于點(diǎn)E,連接DE并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△BDF是等邊三角形;
(2)連接AF、DC,若BC=3,寫出求四邊形AFCD面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖菱形ABCD,四個(gè)頂點(diǎn)分別是A(-2,-1),B(1,-3),C(4,-1),D(1,1).將菱形沿x軸負(fù)方向平移3個(gè)單位長(zhǎng)度得到菱形A1B1C1D1,再將菱形ABCD沿y軸正方向平移4個(gè)單位長(zhǎng)度得到菱形A2B2C2D2,畫出平移后的兩個(gè)圖形并分別寫出它們的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的圖象反映的過程是:張強(qiáng)從家跑步去體育場(chǎng),在那里鍛煉了一陣后又原路返回,順路到文具店去買筆,然后散步回家.其中x表示時(shí)間,y表示張強(qiáng)離家的距離.根據(jù)圖象回答:
(1)體育場(chǎng)離張強(qiáng)家______ 千米,張強(qiáng)從家到體育場(chǎng)用了______ 分鐘;
(2)體育場(chǎng)離文具店______ 千米;
(3)張強(qiáng)在文具店逗留了______ 分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)對(duì)于任意正實(shí)數(shù)a、b,
∵(﹣)2≥0,
∴a﹣2+b≥0,
∴a+b≥2,(只有當(dāng)a=b時(shí),a+b等于2).
(1)(獲得結(jié)論)在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,
則a+b≥2,只有當(dāng)a=b時(shí),a+b有最小值2.
根據(jù)上述內(nèi)容,回答下列問題:若m>0,只有當(dāng)m= 時(shí),m+有最小值 .
(2)(探索應(yīng)用)已知點(diǎn)Q(﹣3,﹣4)是雙曲線y=上一點(diǎn),過Q作QA⊥x軸于點(diǎn)A,作QB⊥y軸于點(diǎn)B.點(diǎn)P為雙曲線y=(x>0)上任意一點(diǎn),連接PA,PB,求四邊形AQBP的面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:
(1)已知點(diǎn)A,B,C表示的數(shù)分別為1,,-3.觀察數(shù)軸,與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是 ,A,B兩點(diǎn)之間的距離為 。
(2)數(shù)軸上,點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)表示的數(shù)是 ;
(3)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則與B點(diǎn)重合的點(diǎn)表示的數(shù)是 ;若此數(shù)軸上M,N兩點(diǎn)之間的距離為2019(M在N的左側(cè)),且當(dāng)A點(diǎn)與C點(diǎn)重合時(shí),M點(diǎn)與N點(diǎn)也恰好重合,則點(diǎn)M表示的數(shù)是 ,點(diǎn)N表示的數(shù)是 。
(4)若數(shù)軸上P,Q兩點(diǎn)間的距離為a(P在Q的左側(cè)),表示數(shù)b的點(diǎn)到P,Q的兩點(diǎn)的距離相等,將數(shù)軸折疊,當(dāng)P點(diǎn)與Q點(diǎn)重合時(shí),點(diǎn)P表示的數(shù)是 ,點(diǎn)Q表示的數(shù)是 (用含a,b的式子表示這兩個(gè)數(shù))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi)有∠AOB=60°,∠AOC=40°,OD是∠AOB的平分線,OE是∠AOC的平分線,求∠DOE的度數(shù).(請(qǐng)作圖解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線叫做該平面圖形的“等積線”,等積線被 這個(gè)平面圖形截得的線段叫做該圖形的“等積線段”(例如三角形的中線就是三角形的等積線段).已 知菱形的邊長(zhǎng)為 4,且有一個(gè)內(nèi)角為 60°,設(shè)它的等積線段長(zhǎng)為 m,則 m 的取值范圍是( )
A. m=4 或 m=4 B. 4≤m≤4 C. 2 D. 2 ≤m≤4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com