【題目】如圖,△ABC中,PQ分別是BCAC上的點,作PR⊥ABPS⊥AC,垂足分別是R、S,若AQ=PQPR=PS,下面四個結(jié)論:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正確結(jié)論的序號是 (請將所有正確結(jié)論的序號都填上).

【答案】①②③④

【解析】

根據(jù)角平分線性質(zhì)即可推出①,根據(jù)勾股定理即可推出AR=AS,根據(jù)等腰三角形性質(zhì)推出∠QAP=QPA,推出∠QPA=BAP,根據(jù)平行線判定推出QP//AB即可;在RtBRPRtQSP中,只有PR=PS,無法判斷BRP≌△QSP;連接RS,與AP交于點D,先證ARD≌△ASD,則RD=SD,ADR=ADS=90°.

①∵PRAB,PSAC,PR=PS,

∴點P在∠A的平分線上,∠ARP=ASP=90°,

∴∠SAP=RAP,

RtARPRtASP中,

RtARPRtASP(HL),

AR=AS,∴①正確;

②∵AQ=QP,

∴∠QAP=QPA,

∵∠QAP=BAP,

∴∠QPA=BAP,

QP//AR,∴②正確;

③在RtBRPRtQSP中,只有PR=PS,

不滿足三角形全等的條件,故③錯誤;

④如圖,連接RS,與AP交于點D,

ARDASD中,

,

∴△ARD≌△ASD,

RD=SD,ADR=ADS=90°,

所以AP垂直平分RS,故④正確,

故答案為:①②④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究

問題1 已知:如圖1,三角形ABC中,點DAB邊的中點,AE⊥BC,BF⊥AC,垂足分別為點E,F(xiàn),AE,BF交于點M,連接DE,DF.若DE=kDF,則k的值為   

拓展

問題2 已知:如圖2,三角形ABC中,CB=CA,點DAB邊的中點,點M在三角形ABC的內(nèi)部,且∠MAC=∠MBC,過點M分別作ME⊥BC,MF⊥AC,垂足分別為點E,F(xiàn),連接DE,DF.求證:DE=DF.

推廣

問題3 如圖3,若將上面問題2中的條件“CB=CA”變?yōu)?/span>“CB≠CA”,其他條件不變,試探究DEDF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,菱形ABCD的對角線AC,BD相交于O,點E,F(xiàn)分別是AD,DC的中點,已知OE=,EF=3,求菱形ABCD的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,直線EF分別交AB,CD于點E,F(xiàn),∠BEF的平分線與∠DFE的平分線相交于點P,試說明△EPF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABP是兩個全等的等邊三角形,且,有下列四個結(jié)論:①,,④四邊形ABCD是軸對稱圖形,其中正確的有

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知BE平分∠ABD, DE平分∠BDC, 并且∠1+3=90°, _____理由是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,試探究其中∠1,∠2∠3,∠4之間的關(guān)系,并證明.

2)用(1)中的結(jié)論解決下列問題:如圖2,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小軍兩人一起做游戲,游戲規(guī)則如下:每人從1,2,…,8中任意選擇一個數(shù)字,然后兩人各轉(zhuǎn)動一次如圖所示的轉(zhuǎn)盤(轉(zhuǎn)盤被分為面積相等的四個扇形),兩人轉(zhuǎn)出的數(shù)字之和等于誰事先選擇的數(shù),誰就獲勝;若兩人轉(zhuǎn)出的數(shù)字之和不等于他們各自選擇的數(shù),就在做一次上述游戲,直至決出勝負.若小軍事先選擇的數(shù)是5,用列表或畫樹狀圖的方法求他獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四組線段中,可以組成直角三角形的是( 。

A. 4,5,6 B. 3,4,5 C. 5,6,7 D. 1,,3

查看答案和解析>>

同步練習(xí)冊答案