【題目】已知AB是⊙O的直徑,C是圓上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,過(guò)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E,如圖①.
(1)求證:DE是⊙O的切線;
(2)若AB=10,AC=6,求BD的長(zhǎng);
(3)如圖②,若F是OA中點(diǎn),FG⊥OA交直線DE于點(diǎn)G,若FG=,tan∠BAD=,求⊙O的半徑.
【答案】(1)證明見(jiàn)解析;(2);(3)4.
【解析】試題分析:(1)欲證明DE是⊙O的切線,只要證明OD⊥DE;
(2)首先證明OD⊥BC,在Rt△BDN中,利用勾股定理計(jì)算即可;
(3)如圖②中,設(shè)FG與AD交于點(diǎn)H,根據(jù)題意,設(shè)AB=5x,AD=4x,則AF=x,想辦法用x表示線段FH、GH,根據(jù)FH+GH=,列出方程即可解決問(wèn)題;
試題解析:解:(1)證明:如圖①中,連接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切線.
(2)如圖①中,連接BC,交OD于點(diǎn)N,∵AB是直徑,∴∠BCA=90°,∵OD∥AE,O是AB的中點(diǎn),∴ON∥AC,且ON=AC,∴∠ONB=90°,且ON=3,則BN=4,ND=2,∴BD==.
(3)如圖②中,設(shè)FG與AD交于點(diǎn)H,根據(jù)題意,設(shè)AB=5x,AD=4x,則AF=x,FH=AFtan∠BAD=x=x,AH== =,HD=AD﹣AH=4x﹣=,由(1)可知,∠HDG+∠ODA=90°,在Rt△HFA中,∠FAH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,過(guò)點(diǎn)G作GM⊥HD,交HD于點(diǎn)M,∴MH=MD,∴HM=HD=×=,∵∠FAH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠FAH=∠HGM,在Rt△HGM中,HG===,∵FH+GH=,∴+=,解得x=,∴此圓的半徑為×=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:AD為△ABC的中線,過(guò)B、C兩點(diǎn)分別作AD所在直線的垂線段BE和CF,E、F為垂足,過(guò)點(diǎn)E作EG∥AB交BC于點(diǎn)H,連結(jié)HF并延長(zhǎng)交AB于點(diǎn)P。
(1)求證:DE=DF
(2)若;①求:的值;②求證:四邊形HGAP為平行四邊形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn).已知當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2.
(1)求一次函數(shù)的解析式;
(2)已知雙曲線在第一象限上有一點(diǎn)C到y(tǒng)軸的距離為3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC與△DEC是兩個(gè)大小不同的等腰直角三角形.
(1)如圖①所示,連接AE,DB,試判斷線段AE和DB的數(shù)量和位置關(guān)系,并說(shuō)明理由;
(2)如圖②所示,連接DB,將線段DB繞D點(diǎn)順時(shí)針旋轉(zhuǎn)90°到DF,連接AF,試判斷線段DE和AF的數(shù)量和位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017山東省萊蕪市,第22題,10分)某網(wǎng)店銷售甲、乙兩種防霧霾口罩,已知甲種口罩每袋的售價(jià)比乙種口罩多5元,小麗從該網(wǎng)店網(wǎng)購(gòu)2袋甲種口罩和3袋乙種口罩共花費(fèi)110元.
(1)改網(wǎng)店甲、乙兩種口罩每袋的售價(jià)各多少元?
(2)根據(jù)消費(fèi)者需求,網(wǎng)店決定用不超過(guò)10000元購(gòu)進(jìn)價(jià)、乙兩種口罩共500袋,且甲種口罩的數(shù)量大于乙種口罩的,已知甲種口罩每袋的進(jìn)價(jià)為22.4元,乙種口罩每袋的進(jìn)價(jià)為18元,請(qǐng)你幫助網(wǎng)店計(jì)算有幾種進(jìn)貨方案?若使網(wǎng)店獲利最大,應(yīng)該購(gòu)進(jìn)甲、乙兩種口罩各多少袋,最大獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.
(1)求∠AOD的度數(shù);
(2)若射線OB繞點(diǎn)O以每秒旋轉(zhuǎn)20°的速度順時(shí)針旋轉(zhuǎn),同時(shí)射線OC以每秒旋轉(zhuǎn)15°的速度逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t秒(0<t<6),試求當(dāng)∠BOC=20°時(shí)t的值;
(3)若∠AOB繞點(diǎn)O以每秒旋轉(zhuǎn)5°的速度逆時(shí)針旋轉(zhuǎn),同時(shí)∠COD繞點(diǎn)O以每秒旋轉(zhuǎn)10°的速度逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋轉(zhuǎn)的過(guò)程中,∠MON的度數(shù)是否發(fā)生改變?若不變,求出其值:若改變,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明、小英、小麗、小華的家位于同一直線上,已知小明家(A)與小英家(B)的距離為320米,小麗家(C)與小英家(B)的距離為480米,小華家(D)位于小明家(A)與小麗家(C)中間的位置.請(qǐng)你根據(jù)條件,畫出圖形,求出小明家(A)與小華家(D)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“愛(ài)我永州”中學(xué)生演講比賽中,五位評(píng)委分別給甲、乙兩位選手的評(píng)分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說(shuō)法中錯(cuò)誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=﹣,x1x2=,我們把它們稱為一元二次方程的根與系數(shù)關(guān)系定理.
問(wèn)題解決:請(qǐng)你參考根與系數(shù)關(guān)系定理,解答下列問(wèn)題:
(1)若關(guān)于x的方程x2+3x+a=0有一個(gè)根為﹣1,則另一個(gè)根為 .
(2)求方程2x2﹣3x=5的兩根之和,兩根之積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com