【題目】如圖所示,在的方格紙中,每個(gè)小正方形的邊長(zhǎng)均為1,線段的端點(diǎn)、均在小正方形的頂點(diǎn)上.
(1)在圖中畫(huà)出以為斜邊的直角三角形,點(diǎn)在小正方形頂點(diǎn)上,且;
(2)在圖中畫(huà)出等腰三角形,點(diǎn)在小正方形的頂點(diǎn)上,且的面積為;
(3)連接,請(qǐng)直接寫(xiě)出的值.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)
【解析】
(1)根據(jù)勾股定理求出AB,然后根據(jù)正切值可設(shè)BC=x,則AC=2x,然后根據(jù)勾股定理列出方程即可求出BC和AC,然后作弧即可確定點(diǎn)C的位置;
(2)若AB=AD=5時(shí),利用勾股定理求出BD,然后作弧即可確定點(diǎn)D的位置,根據(jù)平行線之間的距離處處相等,過(guò)點(diǎn)D作AB的平行線,由圖易知,與網(wǎng)格還有另外一個(gè)交點(diǎn),但與A、B不能構(gòu)成等腰三角形,從而確定結(jié)論;
(3)根據(jù)圖形即可得出結(jié)論.
解:(1)根據(jù)勾股定理可得AB=
∵,可設(shè)BC=x,則AC=2x
根據(jù)勾股定理可得BC2+AC2=AB2
∴x2+(2x)2=52
解得:x=
∴BC=,AC=
∵2個(gè)小正方形構(gòu)成的矩形的對(duì)角線=,2個(gè)“田”字形構(gòu)成的矩形的對(duì)角線=
∴以B為圓心,2個(gè)小正方形構(gòu)成的矩形的對(duì)角線的長(zhǎng)為半徑作弧,以A為圓心,2個(gè)“田”字形構(gòu)成的矩形的對(duì)角線的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)C,連接AC、BC,如圖所示,△ABC即為所求;
(2)若AB=AD=5時(shí),如下圖所示,過(guò)點(diǎn)D作DH⊥AB于H
∵的面積為
∴DH=×2÷AB=
根據(jù)勾股定理AH=
∴BH=AB-AH=
根據(jù)勾股定理BD=,而1個(gè)小正方形的對(duì)角線=
故在網(wǎng)格中以A為圓心,AB的長(zhǎng)為半徑作弧,以B為圓心,以1個(gè)小正方形的對(duì)角線為半徑作弧,兩弧交于點(diǎn)D,連接AD、BD,
根據(jù)平行線之間的距離處處相等,過(guò)點(diǎn)D作AB的平行線,由圖易知,與網(wǎng)格還有另外一個(gè)交點(diǎn),但與A、B不能構(gòu)成等腰三角形,
綜上:△ABD即為所求,
(3)由圖可知:CD=1,BD=,
∴=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題解決)
一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問(wèn)題:如圖1,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?
小明通過(guò)觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△BP′A,連接PP′,求出∠APB的度數(shù);
思路二:將△APB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到△CP'B,連接PP′,求出∠APB的度數(shù).
請(qǐng)參考小明的思路,任選一種寫(xiě)出完整的解答過(guò)程.
(類(lèi)比探究)
如圖2,若點(diǎn)P是正方形ABCD外一點(diǎn),PA=3,PB=1,PC=,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】河西中學(xué)九年級(jí)共有9個(gè)班,300名學(xué)生,學(xué)校要對(duì)該年級(jí)學(xué)生數(shù)學(xué)學(xué)科學(xué)業(yè)水平測(cè)試成績(jī)進(jìn)行抽樣分析,請(qǐng)按要求回答下列問(wèn)題:
(1)(收集數(shù)據(jù))若從所有成績(jī)中抽取一個(gè)容量為36的樣本,以下抽樣方法中最合理的是________.
①在九年級(jí)學(xué)生中隨機(jī)抽取36名學(xué)生的成績(jī);
②按男、女各隨機(jī)抽取18名學(xué)生的成績(jī);
③按班級(jí)在每個(gè)班各隨機(jī)抽取4名學(xué)生的成績(jī).
(2)(整理數(shù)據(jù))將抽取的36名學(xué)生的成績(jī)進(jìn)行分組,繪制頻數(shù)分布表和成績(jī)分布扇形統(tǒng)計(jì)圖如下.請(qǐng)根據(jù)圖表中數(shù)據(jù)填空:
成績(jī)(單位:分) | 頻數(shù) | 頻率 |
A類(lèi)(80~100) | 18 | |
B類(lèi)(60~79) | 9 | |
C類(lèi)(40~59) | 6 | |
D類(lèi)(0~39) | 3 |
①C類(lèi)和D類(lèi)部分的圓心角度數(shù)分別為________°、________°;
②估計(jì)九年級(jí)A、B類(lèi)學(xué)生一共有________名.
(3)(分析數(shù)據(jù))教育主管部門(mén)為了解學(xué)校教學(xué)情況,將河西、復(fù)興兩所中學(xué)的抽樣數(shù)據(jù)進(jìn)行對(duì)比,得下表:
學(xué)校 | 平均數(shù)(分) | 極差(分) | 方差 | A、B類(lèi)的頻率和 |
河西中學(xué) | 71 | 52 | 432 | 0.75 |
復(fù)興中學(xué) | 71 | 80 | 497 | 0.82 |
你認(rèn)為哪所學(xué)校本次測(cè)試成績(jī)較好,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BC⊥AC,圓心O在AC上,點(diǎn)M與點(diǎn)C分別是AC與⊙O的交點(diǎn),點(diǎn)D是MB與⊙O的交點(diǎn),點(diǎn)P是AD延長(zhǎng)線與BC的交點(diǎn),且ADAO=AMAP.
(1)連接OP,證明:△ADM∽△APO;
(2)證明:PD是⊙O的切線;
(3)若AD=12,AM=MC,求PB和DM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:如圖1,圓的概念:在平面內(nèi),線段繞它固定的一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)所形成的圖形叫做圓.就是說(shuō),到某個(gè)定點(diǎn)等于定長(zhǎng)的所有點(diǎn)在同一個(gè)圓上,圓心在,半徑為的圓的方程可以寫(xiě)為:, 如:圓心在,半徑為5的圓方程為:
(1)填空:以為圓心,為半徑的圓的方程為______;
(2)根據(jù)以上材料解決下列問(wèn)題:如圖2, 以為圓心的圓與軸相切于原點(diǎn),是上一點(diǎn),連接,作垂足為,延長(zhǎng)交軸于點(diǎn),已知.
①連接,證明是的切線;
②在上是否存在一點(diǎn),使?若存在,求點(diǎn)坐標(biāo),并寫(xiě)出以為圓心,以為半徑的的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線交軸于點(diǎn),交軸于點(diǎn),.
(1)如圖1,求的值;
(2)如圖2,經(jīng)過(guò)點(diǎn)的直線與直線交于點(diǎn),與軸交于點(diǎn),,交于點(diǎn),設(shè)線段長(zhǎng)為,求與的函數(shù)關(guān)系式;
(3)如圖3,在(2)的條件下,點(diǎn)在第四象限,交于點(diǎn),,點(diǎn)在第一象限,,點(diǎn)在軸上,點(diǎn)在上,交于點(diǎn),,過(guò)點(diǎn)作,交于點(diǎn), ,,,點(diǎn)的坐標(biāo)為,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與直線交于點(diǎn)和點(diǎn),與軸交于點(diǎn),且點(diǎn)在軸上,為拋物線的頂點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)若是第一象限內(nèi)拋物線上的一個(gè)運(yùn)動(dòng)的點(diǎn),點(diǎn)的橫坐標(biāo)為,過(guò)點(diǎn)作軸,交直線于點(diǎn),求當(dāng)為何值時(shí),線段的長(zhǎng)最大?最大值是多少?并直接寫(xiě)出此時(shí)點(diǎn)的坐標(biāo);
(3)在(2)的條件下,當(dāng)的長(zhǎng)取得最大值時(shí),在坐標(biāo)平面內(nèi)是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出符合條件的點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E是AB中點(diǎn),在AD上取一點(diǎn)G,以點(diǎn)G為圓心,GD的長(zhǎng)為半徑作圓,該圓與BC邊相切于點(diǎn)F,連接DE,EF,則圖中陰影部分面積為( 。
A. 3πB. 4πC. 2π+6D. 5π+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司推出一款產(chǎn)品,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷(xiāo)售量y(個(gè))與銷(xiāo)售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,關(guān)于銷(xiāo)售單價(jià),日銷(xiāo)售量,日銷(xiāo)售利潤(rùn)的幾組對(duì)應(yīng)值如表:
銷(xiāo)售單價(jià)x(元) | 85 | 95 | 105 | 115 |
日銷(xiāo)售量y(個(gè)) | 175 | 125 | 75 | 25 |
日銷(xiāo)售利潤(rùn)w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷(xiāo)售利潤(rùn)=日銷(xiāo)售量×(銷(xiāo)售單價(jià)﹣成本單價(jià)))
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià)x為多少元時(shí),日銷(xiāo)售利潤(rùn)w最大?最大利潤(rùn)是多少元?
(3)當(dāng)銷(xiāo)售單價(jià)x為多少元時(shí),日銷(xiāo)售利潤(rùn)w在1500元以上?(請(qǐng)直接寫(xiě)出x的范圍)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com