【題目】如圖:已知在△ABC中,∠ACB=90°,AC=BC=1,點D是AB上任意一點,AE⊥AB,且AE=BD,DE與AC相交于點F.
(1)試判斷△CDE的形狀,并說明理由.
(2)是否存在點D,使AE=AF?如果存在,求出此時AD的長,如果不存在,請說明理由.
【答案】(1)△CDE是等腰直角三角形,見解析;(2)存在AD=1.
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)求∠B=∠BAC=45°,再求出∠CAE=45°,從而得到∠B=∠CAE,再利用“邊角邊”證明△ACE和△BCD全等,根據(jù)全等三角形對應(yīng)邊相等可得CD=CE,全等三角形對應(yīng)角相等可得∠ACE=∠BCD,再求出∠DCE=90°,從而得解;(2)根據(jù)等腰三角形兩底角相等求出∠AEF=∠AFE=67.5°,再根據(jù)直角三角形兩銳角互余求出∠ADE=22.5",然后求出∠ADC=67.5",利用三角形的內(nèi)角和定理求出∠ACD=67.5°,從而得到∠ACD=∠ADC,根據(jù)等角對等邊即可得到AD=AC.
解:(1)△CDE是等腰直角三角形.
理由如下:
∵∠ACB=90°,AC=BC,
∴∠B=∠BAC=45°,
∵AE⊥AB,
∴∠CAE=90°-45°=45°,
∴∠B=∠CAE,
在△ACE和△BCD中,,
∴△ACE≌△BCD(SAS),
∴CD=CE,∠ACE=∠BCD,
∵∠ACD+∠BCD=∠ACB=90°,
∴∠DCE=∠ACD+∠ACE=90°,
∴△CDE是等腰直角三角形;
(2)存在AD=1..
理由如下:
∵AE=AF,∠CAE=45°,
∴∠AEF=∠AFE=(180°-45°)=67.5°,.
∴∠ADE=90°-67.5°=22.5°,
∵△CDE是等腰直角三角形,
∴∠CDE=45°,
∴∠ADC=22.5°+45°=67.5°,
在△ACD中,∠ACD=180°-45°-67.5°=67.5°,
∴∠ACD=∠ADC,
∴AD=AC=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設(shè)每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)yx3的圖象與反比例函數(shù)y(k為常數(shù),且k0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點P在的圖象上,PC⊥軸于點C,交的圖象于點A,PC⊥軸于點D,交的圖象于點B. 當點P在的圖象上運動時,以下結(jié)論:
①
②的值不會發(fā)生變化
③PA與PB始終相等
④當點A是PC的中點時,點B一定是PD的中點.
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E在BC上,連接AD、AE,如果只添加一個條件使∠DAB=∠EAC,則添加的條件不能為( )
A. BD=CE B. AD=AE C. DA=DE D. BE=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,A(-2,1),B(-3,4),C(-1,3),過點(l,0)作x軸的垂線.
(1)作出△ABC關(guān)于直線的軸對稱圖形△;
(2)直接寫出A1(___,___),B1(___,___),C1(___,___);
(3)在△ABC內(nèi)有一點P(m,n),則點P關(guān)于直線的對稱點P1的坐標為(___,___)(結(jié)果用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,登山隊員在山腳點測得山頂點的仰角為,當沿傾斜角為的斜坡前進到達點以后,又在點測得山頂點的仰角為,山的高度________.(精確到米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為a的正方形中挖掉一個邊長為b的小正方形(a>b),把余下的部分剪拼成一個矩形(如圖),通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是( )
A.a2-b2=(a+b)(a-b)
B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2
D.a2-ab=a(a-b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人用如圖的兩個分格均勻的轉(zhuǎn)盤、做游戲,游戲規(guī)則如下:分別轉(zhuǎn)動兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針分別指向一個數(shù)字(若指針停止在等份線上,那么重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止).用所指的兩個數(shù)字相乘,如果積是奇數(shù),則甲獲勝;如果積是偶數(shù),則乙獲勝.請你解決下列問題:
用列表格或畫樹狀圖的方法表示游戲所有可能出現(xiàn)的結(jié)果.
求甲、乙兩人獲勝的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com