【題目】直線n與過原點的直線m交于點P,P點的坐標(biāo)如圖所示,直線ny軸交于點A;若OA=OP;

(1)求A點的坐標(biāo);

(2)求直線m,n的函數(shù)表達式;

(3)求AOP的面積.

【答案】(1)(0,﹣5);(2)y= x、y=2x﹣5;(3)

【解析】

(1)利用勾股定理得出OP=OA=5,進而解答即可;

(2)把A、P點坐標(biāo)代入直線n,把O、P點坐標(biāo)代入直線m,再由待定系數(shù)法可求得直線的解析式;

(3)根據(jù)ABC的面積公式解答即可.

(1)∵點P的坐標(biāo)為(4,3),

OP==5,

OA=OP,

∴點A的坐標(biāo)為(0,-5);

(2)設(shè)直線n的解析式為y1=kx+b,直線m的解析式為y2=ax,

A、P點坐標(biāo)代入直線n,可得:,

解得:

O、P點坐標(biāo)代入直線m,可得:3=4a,

解得:a=,

所以直線m,n的函數(shù)表達式分別為:y=x、y=2x-5;

(3)AOP的面積=×5×3=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)經(jīng)過A(﹣1,0),B(2,0)兩點,與y軸交于點C.

(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)點P在拋物線的對稱軸上,當(dāng)△ACP的周長最小時,求出點P的坐標(biāo);
(3)點N在拋物線上,點M在拋物線的對稱軸上,是否存在以點N為直角頂點的Rt△DNM與Rt△BOC相似?若存在,請求出所有符合條件的點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生“國學(xué)經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或;列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是邊長為4的正方形,點P為OA邊上任意一點(與點O、A不重合),連接CP,過點P作PM⊥CP交AB于點D,且PM=CP,過點M作MN∥AO,交BO于點N,連結(jié)ND、BM,設(shè)OP=t.

(1)求點M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線段MN的長度是否隨點P的位置的變化而改變?并說明理由.
(3)當(dāng)t為何值時,四邊形BNDM的面積最小;
(4)在x軸正半軸上存在點Q,使得△QMN是等腰三角形,請直接寫出不少于4個符合條件的點Q的坐標(biāo)(用含t的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲隊修路500米與乙隊修路800米所用天數(shù)相同,乙隊比甲隊每天多修30米,問甲隊每天修路多少米?
解:設(shè)甲隊每天修路x米,用含x的代表式完成表格:

甲隊每天修路長度(單位:米)

乙隊每天修路長度(單位:米)

甲隊修500米所用天數(shù)(單位:天)

乙隊修800米所用天數(shù)(單位:天)

x

關(guān)系式:甲隊修500米所用天數(shù)=乙隊修800米所用天數(shù)
根據(jù)關(guān)系式列方程為:
解得:
檢驗:
答:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,我們在格點直角坐標(biāo)系上可以看到,要求ABCD的長度,可以轉(zhuǎn)化為求RtABCRtDEF的斜邊長.

例如:從坐標(biāo)系中發(fā)現(xiàn):D(﹣7,3),E(4,﹣3),所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:DE=

(1)在圖①中請用上面的方法求線段AB的長:AB=   ;

(2)在圖②中:設(shè)A(x1,y1),B(x2,y2),試用x1,x2,y1,y2表示:AC=   ,BC=   ,AB=   ;

(3)試用(2)中得出的結(jié)論解決如下題目:已知:A(2,1),B(4,3);

①直線ABx軸交于點D,求線段BD的長;

C為坐標(biāo)軸上的點,且使得ABC是以AB為邊的等腰三角形,請求出C點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎同學(xué)在手工制作中,把一個邊長為12cm的等邊三角形紙片貼到一個圓形的紙片上,若三角形的三個頂點恰好都在這個圓上,則圓的半徑為(
A.2 cm
B.4 cm
C.6 cm
D.8 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“蘑菇石”是我省著名自然保護區(qū)梵凈山的標(biāo)志,小明從山腳B點先乘坐纜車到達觀景平臺DE觀景,然后再沿著坡腳為29°的斜坡由E點步行到達“蘑菇石”A點,“蘑菇石”A點到水平面BC的垂直距離為1790m.如圖,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的長度.(結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過⊙O上的兩點A、B分別作切線,并交BO、AO的延長線于點C、D,連接CD,交⊙O于點E、F,過圓心O作OM⊥CD,垂足為M點.求證:

(1)△ACO≌△BDO;
(2)CE=DF.

查看答案和解析>>

同步練習(xí)冊答案