【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件.

(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種工具,每天所得的銷(xiāo)售利潤(rùn)w()與銷(xiāo)售單價(jià)x()之間的函數(shù)關(guān)系式;

(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;

(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案:

方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;

方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元.

請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.

【答案】1w=-10x2700x10000;

2銷(xiāo)售單價(jià)為35元時(shí),每天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)為2250元;

3方案A的最大利潤(rùn)更高,理由見(jiàn)解析.

【解析】試題分析:(1)根據(jù)利潤(rùn)=(銷(xiāo)售單價(jià)-進(jìn)價(jià))×銷(xiāo)售量,列出函數(shù)關(guān)系式即可;

(2)根據(jù)(1)式列出的函數(shù)關(guān)系式,運(yùn)用配方法求最大值;

(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤(rùn),然后進(jìn)行比較.

試題解析:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.

(2)w=-10x2+700x-10000=-10(x-35)2+2250.

所以,當(dāng)x=35時(shí),w有最大值2250.

即銷(xiāo)售單價(jià)為35元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大.

(3)方案A:由題可得20<x≤30,

因?yàn)?/span>a=-10<0,對(duì)稱軸為x=35,

拋物線開(kāi)口向下,在對(duì)稱軸左側(cè),wx的增大而增大,

所以,當(dāng)x=30時(shí),w取最大值為2000元.

方案B:由題意得,解得: ,

在對(duì)稱軸右側(cè),wx的增大而減小,

所以,當(dāng)x=45時(shí),w取最大值為1250元.

因?yàn)?000元>1250元,

所以選擇方案A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點(diǎn),拋物線y=x2+bx+c過(guò)A、B兩點(diǎn).

1)求這個(gè)拋物線的解析式;

2)作垂直x軸的直線x=t,在第一象限交直線ABM,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、滿足:.

1)求的值;

2)已知線段AB,點(diǎn)P在直線AB上,且,點(diǎn)QPB的中點(diǎn),求線段AQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,A點(diǎn)表示2,現(xiàn)在點(diǎn)A向右移動(dòng)兩個(gè)單位后到達(dá)點(diǎn)B;再向左移動(dòng)10個(gè)單位到達(dá)C點(diǎn):

1)請(qǐng)?jiān)跀?shù)軸上表示出A點(diǎn)開(kāi)始移動(dòng)時(shí)位置及B、C點(diǎn)位置;

2)當(dāng)A點(diǎn)移動(dòng)到C點(diǎn)時(shí),若要再移動(dòng)到原點(diǎn),問(wèn)必須向哪個(gè)方向移動(dòng)多少個(gè)單位?

3)請(qǐng)把A點(diǎn)從開(kāi)始移動(dòng)直至到達(dá)原點(diǎn)這一過(guò)程,用一個(gè)有理數(shù)算式表達(dá)出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鎮(zhèn)道路改造工程,由甲、乙兩工程隊(duì)合作完成.甲工程隊(duì)單獨(dú)施工比乙工程隊(duì)單獨(dú)施工多用30天完成此項(xiàng)工程,甲工程隊(duì)30天完成的工程與甲、乙兩工程隊(duì)10天完成的工程相等.

1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?

2)如果甲工程隊(duì)施工每天需付施工費(fèi)1萬(wàn)元,乙工程隊(duì)施工每天需付施工費(fèi)2.5萬(wàn)元,甲工程隊(duì)至少要單獨(dú)施工多少天后,再由甲、乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過(guò)64萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中,點(diǎn)A,B,C,P,Q,R顯示了6名學(xué)生平均每周用于閱讀課外書(shū)的時(shí)間和用于看電視的時(shí)間(單位:h)

(1)用有序數(shù)對(duì)表示圖中點(diǎn)A,B,C,P,Q,R

(2)圖中方格紙的對(duì)角線的左上方的點(diǎn)有什么共同的特點(diǎn)?它右下方的點(diǎn)呢?

(3)三角形ABC的圖形經(jīng)過(guò)怎樣的變換后得到三角形PQR的圖形?其中點(diǎn)A對(duì)應(yīng)點(diǎn)P,點(diǎn)B對(duì)應(yīng)點(diǎn)Q,點(diǎn)C對(duì)應(yīng)點(diǎn)R

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.


(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫(xiě)出滿足kx+b≥(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,,是對(duì)角線上的一個(gè)動(dòng)點(diǎn),若的最小值是10,則長(zhǎng)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】吉林省廣播電視塔(簡(jiǎn)稱吉塔)是我省目前最高的人工建筑,也是俯瞰長(zhǎng)春市美景的最佳去處.某科技興趣小組利用無(wú)人機(jī)搭載測(cè)量?jī)x器測(cè)量吉塔的高度.已知如圖將無(wú)人機(jī)置于距離吉塔水平距離138米的點(diǎn)C處,則從無(wú)人機(jī)上觀測(cè)塔尖的仰角恰為30°,觀測(cè)塔基座中心點(diǎn)的俯角恰為45°.求吉塔的高度.(注: ≈1.73,結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案