【題目】如圖,∠D=∠C=90°,EDC的中點(diǎn),AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________

【答案】28°

【解析】

過點(diǎn)EEFABF,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DE=EF,根據(jù)線段中點(diǎn)的定義可得DE=CE,然后求出CE=EF,再根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上證明即可得出BE平分∠ABC,最后求得∠ABE的度數(shù).

如圖,過點(diǎn)EEFABF,

∵∠D=C=90°,AE平分∠DAB,

DE=EF,

EDC的中點(diǎn),

DE=CE,

CE=EF,

又∵∠C=90°,

∴點(diǎn)E在∠ABC的平分線上,

BE平分∠ABC

又∵ADBC,

∴∠ABC+BAD=180°,

∴∠AEB=90°,

∴∠BEC=90°AED=62°,

RtBCE,CBE=28°,

∴∠ABE=28°

故填:28°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了實(shí)現(xiàn)暢通市區(qū)的目標(biāo),市地鐵一號(hào)線準(zhǔn)備動(dòng)工,市政府現(xiàn)對(duì)地鐵一號(hào)線第標(biāo)段工程進(jìn)行招標(biāo),施工距離全長為米.經(jīng)招標(biāo)協(xié)定,該工程由甲、乙兩公司承建,甲、乙兩公司施工方案及報(bào)價(jià)分別為:

甲公司施工單價(jià)(萬元/米)與施工長度(米)之間的函數(shù)關(guān)系為,

乙公司施工單價(jià)(萬元/米)與施工長度(米)之間的函數(shù)關(guān)系為

(注:工程款施工單價(jià)施工長度)

如果不考慮其他因素,單獨(dú)由甲公司施工,那么完成此項(xiàng)工程需工程款多少萬元?

考慮到設(shè)備和技術(shù)等因素,甲公司必須邀請乙公司聯(lián)合施工,共同完成該工程.因設(shè)備共享,兩公司聯(lián)合施工時(shí)市政府可節(jié)省工程款萬元(從工程款中扣除).

如果設(shè)甲公司施工,那么乙公司施工________米,其施工單價(jià)________萬元/米,試求市政府共支付工程款(萬元)與(米)之間的函數(shù)關(guān)系式;

如果市政府支付的工程款為萬元,那么應(yīng)將多長的施工距離安排給乙公司施工?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,、兩個(gè)圓柱形容器放置在同一水平桌面上,開始時(shí)容器中盛滿水,容器中盛有高度為1 dm的水,容器下方裝有一只水龍頭,容器向容器勻速注水.設(shè)時(shí)間為t (s),容器中的水位高度(dm)、(dm)與時(shí)間t (s)之間的部分函數(shù)圖像如圖②所示.根據(jù)圖中數(shù)據(jù)解答下列問題:

(1)容器向容器注水的速度為 dm3/s(結(jié)果保留),容器的底面直徑 dm;

(2)當(dāng)容器注滿水后,容器停止向容器注水,同時(shí)開啟容器的水龍頭進(jìn)行放水,放水速度為dm3/s.請?jiān)趫D②中畫出容器中水位高度與時(shí)間 ()的函數(shù)圖像,說明理由;

(3)當(dāng)容器B注滿水后,容器A繼向容器B注水,同時(shí)開啟容器B的水龍頭進(jìn)行放水,放水速度為dm3/s,直至容器、水位高度相同時(shí),立即停止放水和注水,求容器向容器全程注水時(shí)間.(提示:圓柱體積=圓柱的底面積×圓柱的高)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店銷售一種進(jìn)價(jià)為每本10元的筆記本,為獲得高利潤,以不低于進(jìn)價(jià)進(jìn)行銷售,結(jié)果發(fā)現(xiàn),每月銷售量y與銷售單價(jià)x之間的關(guān)系可以近似地看作一次函數(shù):y=﹣5x+150,物價(jià)部門規(guī)定這種筆記本每本的銷售單價(jià)不得高于18元.

(1)當(dāng)每月銷售量為70本時(shí),獲得的利潤為多少元;

(2)該文具店這種筆記本每月獲得利潤為W元,求每月獲得的利潤W元與銷售單價(jià)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤,最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(,1)在射線OM上,點(diǎn)B(,3)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個(gè)RtBA1B1,以A1B1為直角邊作第三個(gè)RtA1B1A2,…,依次規(guī)律,得到RtB2017A2018B2018,則點(diǎn)B2018的縱坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A城氣象臺(tái)測得臺(tái)風(fēng)中心在A城正西方向600kmB處,以每小時(shí)200km的速度向北偏東60°的方向移動(dòng),距臺(tái)風(fēng)中心500km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.

1A城是否受到這次臺(tái)風(fēng)的影響?為什么?

2)若A城受到這次臺(tái)風(fēng)的影響,那么A城遭受這次臺(tái)風(fēng)影響有多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知港口位于觀測點(diǎn)北偏東方向,且其到觀測點(diǎn)正北方向的距離的長為,一艘貨輪從港口以的速度沿如圖所示的方向航行,后達(dá)到處,現(xiàn)測得處位于觀測點(diǎn)北偏東方向,求此時(shí)貨輪與觀測點(diǎn)之間的距離的長(精確到).(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC,A=96°,延長BCD,ABC的平分線與∠ACD的平分線交于點(diǎn)A,ABC的平分線與∠ACD的平分線交于點(diǎn)A,以此類推,ABC的平分線與∠ACD的平分線交于點(diǎn)A,則∠A的大小是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直角三角形ABC中,∠C90°,CB1,∠BAC30°

(1)求AB、AC的長;

(2)如圖2,將AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AE,將AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AD

連接CEBD.求證:BDEC;

連接DEABF,請你作出符合題意的圖形并求出DE的長

查看答案和解析>>

同步練習(xí)冊答案