【題目】學(xué)校開展“書香校園”活動以來,受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計表.

學(xué)生借閱圖書的次數(shù):

借閱圖書的次數(shù)

0

1

2

3

4次以上

人數(shù)

7

13

10

3

請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

1________________________;

2)該調(diào)查統(tǒng)計數(shù)據(jù)的中位數(shù)是___________次;

3)扇形統(tǒng)計圖中,“3次”所對應(yīng)扇形的圓心角的度數(shù)是____________;

4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校學(xué)生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).

【答案】117、20;(22;(372;(4120

【解析】

1)先由1次的人數(shù)及其所占百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他次數(shù)的人數(shù)求得a的值,用3次的人數(shù)除以總?cè)藬?shù)求得b的值;
2)根據(jù)中位數(shù)的定義求解;
3)用360°乘以“3對應(yīng)的百分比即可得;
4)用總?cè)藬?shù)乘以樣本中“4次及以上的人數(shù)所占比例即可得.

解:(1被調(diào)查的總?cè)藬?shù)為人,

,

,

故答案為17、20

2)由于共有50個數(shù)煙,共中位數(shù)為第25、26個數(shù)煙的平均數(shù),

而第25、26個數(shù)煙均為2次,所以中位數(shù)為2次,

故答案為:2次.

3)扇形統(tǒng)計圖中“3所對應(yīng)扇形的側(cè)小角的度數(shù)為;

4)估計該校學(xué)在一周內(nèi)借閱圖書“4次及以上的人數(shù)為人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點AACx軸于點C,過點BBDx軸于點D.

(1)a,b的值及反比例函數(shù)的解析式;

(2)若點P在直線y=﹣x+2上,且SACP=SBDP,請求出此時點P的坐標(biāo);

(3)x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,ABCD,∠ABC=60°AB=BC=4,CD=3

(1)如圖1,求△BCD的面積;

(2)如圖2,MCD邊上一點,將線段BM繞點B逆時針旋轉(zhuǎn)60°,可得線段BN,過點NNQBC,垂足為Q,設(shè)NQ=n,BQ=m,求n關(guān)于m的函數(shù)解析式.(自變量m的取值范圍只需直接寫出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC,∠B=90°,∠C=30°,O為AC上一點,OA=2,以O(shè)為圓心,以O(shè)A為半徑的圓與CB相切于點E,與AB相交于點F,連接OE、OF,則圖中陰影部分的面積是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,過點作直線,將繞點順時針旋轉(zhuǎn)得到(點的對應(yīng)點分別為),射線分別交直線于點.

1)如圖,當(dāng)重合時,求的度數(shù);

2)如圖,設(shè)的交點為,當(dāng)的中點時,求線段的長;

3)在旋轉(zhuǎn)過程中,當(dāng)點分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,過點作直線,將繞點順時針旋轉(zhuǎn)得到(點的對應(yīng)點分別為).

1)問題發(fā)現(xiàn)如圖1,若重合時,則的度數(shù)為____________;

2)類比探究:如圖2,設(shè)BC的交點為,當(dāng)的中點時,求線段的長;

3)拓展延伸在旋轉(zhuǎn)過程中,當(dāng)點分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,直接寫出四邊形的最小面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知將反比例函數(shù)x0),沿y軸翻折得到反比例函數(shù)x0),一次函數(shù)yax+b交于A1,m),B4,n)兩點;

1)求反比例函數(shù)y2和一次函數(shù)yax+b的解析式;

2)連接OA,過BBCx軸,垂足為C,點P是線段AB上一點,若直線OP將四邊形OABC的面積分成12兩部分,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=[x22+n]x軸交于點Am2,0)和B2m+30)(點A在點B的左側(cè)),與y軸交于點C,連結(jié)BC

1)求mn的值;

2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CNBN.求△NBC面積的最大值;

3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得(  )

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊答案