【題目】某服裝店新開張,第一天銷售服裝a件,第二天比第一天少銷售14件,第三天的銷售量是第二天的2倍多10件,則這三天銷售了( 。┘

A. 3a﹣42 B. 3a+42 C. 4a﹣32 D. 3a+32

【答案】C

【解析】

根據(jù)題意可以用相應(yīng)的代數(shù)式表示出這三天一共出售了多少件服裝.

∵某服裝店新開張,第一天銷售服裝a件,第二天比第一天少銷售14件,第三天的銷售量是第二天的2倍多10件,

∴這三天銷售了:a+(a-14)+2(a-14)+10=a+a-14+2a-28+10=(4a-32)件,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題:

定義:如果一個數(shù)的平方等于﹣1,記為i2=﹣1,這個數(shù)i叫做虛數(shù)單位.那么和我們所學(xué)的實數(shù)對應(yīng)起來就叫做復(fù)數(shù),表示為a+bi(a,b為實數(shù)),a叫這個復(fù)數(shù)的實部,b叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似.

例如計算:(5+i)×(3﹣4i)=19﹣17i.

(1)填空:i3=   ,i4=  

(2)計算:(4+i)2.

(3)試一試:請利用以前學(xué)習(xí)的有關(guān)知識將化簡成a+bi的形式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(0,3)兩點

(1)求此拋物線的解析式和直線AB的解析式;

(2)如圖①,動點E從O點出發(fā),沿著OA方向以1個單位/秒的速度向終點A勻速運動,同時,動點F從A點出發(fā),沿著AB方向以個單位/秒的速度向終點B勻速運動,當(dāng)E,F(xiàn)中任意一點到達終點時另一點也隨之停止運動,連接EF,設(shè)運動時間為t秒,當(dāng)t為何值時,△AEF為直角三角形?

(3)如圖②,取一根橡皮筋,兩端點分別固定在A,B處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P與A,B兩點構(gòu)成無數(shù)個三角形,在這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時點P的坐標(biāo);如果不存在,請簡要說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用不等式表示“x的2倍與5的差是負數(shù)”正確的是( )
A.2x-5>0
B.2x-5<0
C.2x-5≠0
D.2x-5≤0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于A、B、C三點,其中點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(﹣4,0)

(1)求該二次函數(shù)的表達式及點C的坐標(biāo);

(2)點D的坐標(biāo)為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S

①求S的最大值;

②在點F的運動過程中,當(dāng)點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a2+2a=1,則代數(shù)式1﹣2(a2+2a)的值為( 。

A. 0 B. 1 C. ﹣1 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的對話。

小紅:“售貨員,我要買些梨!

售貨員說:“小紅,你上次買的那種梨賣完了,我們還沒來得及進貨,我建議你這次買些新進的蘋果,價格比梨貴一點,不過這批蘋果的味道挺好喲!”

小紅:“好,這次和上次一樣,也花30元。”

對照前后兩次的電腦小票,小紅發(fā)現(xiàn),每千克蘋果的單價是梨的1.5倍,買的蘋果的重量比梨輕2.5Kg。

試根據(jù)上面的對話和小紅的發(fā)現(xiàn),分別求出蘋果和梨的單價。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC

(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;

(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;

(3)在(2)的條件下,若DE=4,DF=3,求AF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,二次函數(shù)的圖像過點 A (3,0),B (0,4)兩點,動點 P A 出發(fā),在線段 AB 上沿 A B 的方向以每秒 2 個單位長度的速度運動,過點P PDy 于點 D ,交拋物線于點 C 設(shè)運動時間為 t (秒)

1)求二次函數(shù)的表達式;

(2)連接 BC ,當(dāng)t時,求BCP的面積;

(3)如圖 2,動點 P A 出發(fā)時,動點 Q 同時從 O 出發(fā),在線段 OA 上沿 OA 的方向以 1個單位長度的速度運動,當(dāng)點 P B 重合時,P 、 Q 兩點同時停止運動,連接 DQ 、 PQ ,將DPQ沿直線 PC 折疊到 DPE 在運動過程中,設(shè) DPE OAB重合部分的面積為 S ,直接寫出 S t 的函數(shù)關(guān)系式及 t 的取值范圍

查看答案和解析>>

同步練習(xí)冊答案