如圖所示,某學(xué)校擬建一個(gè)含內(nèi)接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個(gè)頂點(diǎn)分別在菱形四條邊上,菱形ABCD的邊長AB=4米,∠ABC=60°.設(shè)AE=x米(0<x<4),矩形EFGH的面積為S米2.
(1)求S與x的函數(shù)關(guān)系式;
(2)學(xué)校準(zhǔn)備在矩形內(nèi)種植紅色花草,四個(gè)三角形內(nèi)種植黃色花草.已知紅色花草的價(jià)格為20元/米2,黃色花草的價(jià)格為40元/米2.當(dāng)x為何值時(shí),購買花草所需的總費(fèi)用最低,并求出最低總費(fèi)用(結(jié)果保留根號(hào))?
解:(1)連接AC、BD,
∵花壇為軸對稱圖形,
∴EH∥BD,EF∥AC。
∴△BEF∽△BAC。
∵∠ABC=60°,
∴△ABC、△BEF是等邊三角形。
∴EF=BE=AB﹣AE=4﹣x,
在Rt△AEM中,∠AEM=∠ABD=30°,
則EM=AEcos∠AEM=x,∴EH=2EM=x.
∴S=(4﹣x)×x=﹣x2+4x。
(2)易求得菱形ABCD的面積為8cm2,
由(1)得,矩形ABCD的面積為x2,則可得四個(gè)三角形的面積為(8+x2﹣4x),
設(shè)總費(fèi)用為W,
則W=20(﹣x2+4x)+40(8+x2﹣4x)=20x2﹣80x+320
=20(x﹣2)2+240。
∵0<x<4,∴當(dāng)x=2時(shí),W取得最小,W最小=240元。
∴當(dāng)x為2時(shí),購買花草所需的總費(fèi)用最低,最低費(fèi)用為240元。
【解析】
試題分析:(1)連接AC、BD,根據(jù)軸對稱的性質(zhì),可得EH∥BD,EF∥AC,△BEF為等邊三角形,從而求出EF,在Rt△AEM中求出EM,繼而得出EH,這樣即可得出S與x的函數(shù)關(guān)系式。
(2)根據(jù)(1)的答案,可求出四個(gè)三角形的面積,設(shè)費(fèi)用為W,則可得出W關(guān)于x的二次函數(shù)關(guān)系式,利用配方法求最值即可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:四川省中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第31章《銳角三角函數(shù)》中考題集(37):31.3 銳角三角函數(shù)的應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com