精英家教網 > 初中數學 > 題目詳情

【題目】如圖,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE平分∠ABC,則下列關系式中成立的有( )

; ②;③ ;④; ⑤

A. 2個 B. 3個 C. 4個 D. 5個

【答案】B

【解析】

AB∥CD∠A=90°可得∠A=∠D=90°,再由CE、BE均為角平分線可得∠ECB+EBC=90°,∠CEB=90°,進而可證明△CDE∽△CEB∽△EAB,有各自的比例關系可分別驗證.

:∵AB∥CD,∠A=90°

∴∠A=∠D=90°,

∵CEBE均為角平分線

∴∠DCB+∠CBA=2∠ECB+2∠CBE=180°,

∴∠ECB+∠CBE=90°,

∴∠CEB=90°,

∴△CDE∽△CEB∽△EAB,

,,故②和正確,

,正確.

正確的為②③④,

故選擇B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E在邊DC上,DE=7,EC=3,把線段AE繞點A旋轉后使點E落在直線BC上的點P處,則CP的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1),拋物線x軸交于A(1,0)、B(t,0)(t >0)兩點,與y軸交于點C(0,3),若拋物線的對稱軸為直線x=1,

(1)求拋物線的函數解析式;

(2 若點D是拋物線BC段上的動點,且點D到直線BC的距離為,求點D的坐標

(3)如圖(2),若直線y=mx+n經過點A,交y軸于點E(0,1),點P是直線AE下方拋物線上一點,過點Px軸的垂線交直線AE于點M,點N在線段AM延長線上,且PM=PN,是否存在點P,使△PMN的周長有最大值?若存在,求出點P的坐標及△PMN的周長的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A市有近20年的馬拉松比賽歷史,過去全程馬拉松名額一直相對較少。而近幾年,這一現狀大大改變,很多想參加全程馬拉松(簡稱全馬)的跑者報不上名。所以該城市近兩年也大幅增加全馬的名額。2017年,參加全馬的人數比半馬的人少,但是2018年,2019年參加全馬的人數呈上升趨勢,且每年比前一年均增加25%(即2018年比2017年增加25%,2019年比2018年增加25%),2019年,有12500全馬參賽者。

1)求2017年、2018全馬參賽人數;

2)據贊助食物的某商家反映:2017年與2018年該商家分別給參加全馬半馬的參賽者提供了不同價格的食物,每個全馬參賽者獲得的食物價值高于半馬參賽者,2017年,商家提供食物共用去22萬元;這兩年商家是按同一個標準分別給全馬半馬參賽者提供食物(人太多,標準不可輕易提高),即使這樣,2018年,雖然參加馬拉松比賽的總人數與2017年一樣多,但是由于全馬參賽者人數剛好與半馬參賽者人數調換了,贊助商比2017年多提供了p萬元的食物;商家發(fā)現這p萬元的食物剛好可以供400全馬參賽者和400半馬參賽者享用。求p的值。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】取何值時,下列各式在實數范圍內有意義?

1;

2;

3

4;

5;

6.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】作圖題:

1)過點A畫高AD;

2)過點B畫中線BE;

3)過點C畫角平分線CF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,,分別以AB、AC為邊作等邊三角形ABD與等邊三角形ACE,連接BE、CD,BE的延長線與CD交于點F,連接AF,有以下四個結論:①;②FA平分;③;④.其中一定正確的結論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為鳳凰方程.已知鳳凰方程,且有兩個相等的實數根,則下列結論正確的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,∠ACB=90AC=BC,直線MN經過點C,且AD⊥MNDBE⊥MNE.

(1)當直線MN如圖(1)的位置時,

求證:①△ADC△CEB DE=AD+BE

(2)當直線MN繞點C旋轉到圖(2)的位置時,直接寫出DEAD、BE三者之間的關系 .

查看答案和解析>>

同步練習冊答案