【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為________

【答案】

【解析】試題分析:根據(jù)點O與點A的坐標求出平移后的拋物線的對稱軸,然后求出點P的坐標,過點PPM⊥y軸于點M,根據(jù)拋物線的對稱性可知陰影部分的面積等于矩形NPMO的面積,然后求解即可.

試題解析:過點PPM⊥y軸于點M,

拋物線平移后經(jīng)過原點O和點A-60),

平移后的拋物線對稱軸為x=-3,

得出二次函數(shù)解析式為:y=x+32+h,

將(-60)代入得出:

0=-6+32+h,

解得:h=-,

P的坐標是(-3,-),

根據(jù)拋物線的對稱性可知,陰影部分的面積等于矩形NPMO的面積,

S=|-3|×|-|=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】用小立方體搭一個幾何體,使它從正面、從上面看到的形狀圖如圖所示,這樣的幾何體只有一種嗎?

1它最多需要多少個小立方體?它最少需要多少個小立方體?

2請你畫出這兩種情況下的從左面看到的形狀圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線y= -x+2與y軸交于點A,點A關(guān)于x軸的對稱點為B,過點By軸的垂線l,直線l與直線y= -x+2交于點C

(1)求點B、C的坐標;

(2)若直線y=2x+b與△ABC有兩個公共點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程(2a4)x2(3a6)xa80沒有常數(shù)項,則a的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+6(a≠0)交x軸與A,B兩點(點A在點B左側(cè)),將直尺WXYZ與x軸負方向成45°放置,邊WZ經(jīng)過拋物線上的點C(4,m),與拋物線的另一交點為點D,直尺被x軸截得的線段EF=2,且△CEF的面積為6.

(1)求該拋物線的解析式;

(2)探究:在直線AC上方的拋物線上是否存在一點P,使得△ACP的面積最大?若存在,請求出面積的最大值及此時點P的坐標;若不存在,請說明理由.

(3)將直尺以每秒2個單位的速度沿x軸向左平移,設平移的時間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線與x軸交于點M,與拋物線的其中一個交點為點N,請直接寫出當t為何值時,可使得以C、D、M、N為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(k4)x23x+k2160的一個根為0,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx﹣3經(jīng)過(﹣1,0),(3,0)兩點,與y軸交于點C,直線y=kx與拋物線交于A,B兩點.

(1)寫出點C的坐標并求出此拋物線的解析式;

(2)當原點O為線段AB的中點時,求k的值及A,B兩點的坐標;

(3)是否存在實數(shù)k使得△ABC的面積為?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC和△DEF中,給出下列四組條件:
①AB=DE,BC=EF,AC=DF;
②AB=DE,∠B=∠E,BC=EF;
③∠B=∠E,BC=EF,AC=DF;
④∠A=∠D,∠B=∠E,∠C=∠F.
其中,能使△ABC≌△DEF的條件共有( )
A.1組
B.2組
C.3組
D.4組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016山東省泰安市第26題)某學校是乒乓球體育傳統(tǒng)項目學校,為進一步推動該項目的開展,學校準備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價為2元/個,若購買20副直拍球拍和15副橫拍球拍花費9000元;購買10副橫拍球拍比購買5副直拍球拍多花費1600元.

(1)求兩種球拍每副各多少元?

(2)若學校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.

查看答案和解析>>

同步練習冊答案