【題目】在平面直角坐標系中,點(1,﹣3)在()
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
科目:初中數學 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點旋轉90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中的每個小正方形邊長都是1.
(1)圖1中已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形(要求:畫出一個即可);
(2)在圖2中畫出一個以格點為端點長為 的線段.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P位于x軸下方,距離x軸5個單位,位于y軸右方,距離y軸3個單位,那么P點的坐標是( )
A.(5,-3) B.(3,-5) C.(-5,3) D.(-3,5)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(3,3).將正方形ABCO繞點A順時針旋轉角度α(0°<α<90°),得到正方形ADEF,ED交線段OC于點G,ED的延長線交線段BC于點P,連AP、AG.
(1)求證:△AOG≌△ADG;
(2)求∠PAG的度數;并判斷線段OG、PG、BP之間的數量關系,說明理由;
(3)當∠1=∠2時,求直線PE的解析式;
(4)在(3)的條件下,直線PE上是否存在點M,使以M、A、G為頂點的三角形是等腰三角形?若存在,請直接寫出M點坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com