【題目】如圖所示,在Rt△ABC與Rt△OCD中,∠ACB=∠DCO=90°,O為AB的中點(diǎn).

(1)求證:∠B=∠ACD.
(2)已知點(diǎn)E在AB上,且BC2=ABBE.
(i)若tan∠ACD= ,BC=10,求CE的長;
(ii)試判定CD與以A為圓心、AE為半徑的⊙A的位置關(guān)系,并請(qǐng)說明理由.

【答案】
(1)

證明:∵∠ACB=∠DCO=90°,

∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,

即∠ACD=∠OCB,

又∵點(diǎn)O是AB的中點(diǎn),

∴OC=OB,

∴∠OCB=∠B,

∴∠ACD=∠B


(2)

解:(i)∵BC2=ABBE,

∵∠B=∠B,

∴△ABC∽△CBE,

∴∠ACB=∠CEB=90°,

∵∠ACD=∠B,

∴tan∠ACD=tan∠B= ,

設(shè)BE=4x,CE=3x,

由勾股定理可知:BE2+CE2=BC2

∴(4x)2+(3x)2=100,

∴解得x=2 ,

∴CE=6 ;

(ii)過點(diǎn)A作AF⊥CD于點(diǎn)F,

∵∠CEB=90°,

∴∠B+∠ECB=90°,

∵∠ACE+∠ECB=90°,

∴∠B=∠ACE,

∵∠ACD=∠B,

∴∠ACD=∠ACE,

∴CA平分∠DCE,

∵AF⊥CE,AE⊥CE,

∴AF=AE,

∴直線CD與⊙A相切


【解析】(1)因?yàn)椤螦CB=∠DCO=90°,所以∠ACD=∠OCB,又因?yàn)辄c(diǎn)O是Rt△ACB中斜邊AB的中點(diǎn),所以O(shè)C=OB,所以∠OCB=∠B,利用等量代換可知∠ACD=∠B;(2)(i)因?yàn)锽C2=ABBE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,因?yàn)閠an∠ACD=tan∠B,利用勾股定理即可求出CE的值;
(ii)過點(diǎn)A作AF⊥CD于點(diǎn)F,易證∠DCA=∠ACE,所以CA是∠DCE的平分線,所以AF=AE,所以直線CD與⊙A相切.本題考查圓的綜合問題,涉及等量代換,勾股定理,相似三角形的判定與性質(zhì),銳角三角函數(shù)等知識(shí),知識(shí)點(diǎn)較綜合,需要學(xué)生靈活運(yùn)用所學(xué)知識(shí)解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)正方體的平面展開圖,標(biāo)注了A字母的是正方體的正面,如果正方體的左面與右面標(biāo)注的式子相等.

(1)求x的值.

(2)求正方體的上面和底面的數(shù)字和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)DAB邊上,點(diǎn)D到點(diǎn)A的距離與點(diǎn)D到點(diǎn)C的距離相等.

(1)利用尺規(guī)作圖作出點(diǎn)D,不寫作法但保留作圖痕跡.

(2)若ABC的底邊長5,周長為21,求BCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C是數(shù)軸上的三點(diǎn),O是原點(diǎn),BO=3,AB=2BO,5AO=3CO.

(1)寫出數(shù)軸上點(diǎn)A、C表示的數(shù);

(2)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒6個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),M為線段AP的中點(diǎn),點(diǎn)N在線段CQ,CN=CQ.設(shè)運(yùn)動(dòng)的時(shí)間為t(t>0).

數(shù)軸上點(diǎn)M、N表示的數(shù)分別是    (用含t的式子表示);

t為何值時(shí),M、N兩點(diǎn)到原點(diǎn)的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向南為正,向北為負(fù),單位:km):

①接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?

②若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?

③若該出租車的計(jì)價(jià)標(biāo)準(zhǔn)為:行駛路程不超過3km收費(fèi)10元,超過3km的部分按每千米加1.8元收費(fèi),在這過程中該駕駛員共收到車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究規(guī)律,完成相關(guān)題目.

老師說:“我定義了一種新的運(yùn)算,叫(加乘)運(yùn)算.”

然后老師寫出了一些按照(加乘)運(yùn)算的運(yùn)算法則進(jìn)行運(yùn)算的算式:

(+5)(+2)=+7;(-3)(-5)=+8;

(-3)(+4)=-7; (+5)(-6)=-11;

0(+8)=8;(-6)0=6.

小明看了這些算式后說:“我知道老師定義的(加乘)運(yùn)算的運(yùn)算法則了.”

聰明的你也明白了嗎?

(1)歸納(加乘)運(yùn)算的運(yùn)算法則:

兩數(shù)進(jìn)行(加乘)運(yùn)算時(shí),運(yùn)算法則是什么.

特別地,0和任何數(shù)進(jìn)行(加乘)運(yùn)算,或任何數(shù)和0進(jìn)行(加乘)運(yùn)算運(yùn)算法則是什么.

(2)計(jì)算:

①()[)].(括號(hào)的作用與它在有理數(shù)運(yùn)算中的作用一致)

② 若(( ).求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某氣象臺(tái)發(fā)現(xiàn):在某段時(shí)間里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知這段時(shí)間有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,則這一段時(shí)間有( 。
A.9天
B.11天
C.13天
D.22天

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).

(1)求拋物線的解析式;
(2)H是C關(guān)于x軸的對(duì)稱點(diǎn),P是拋物線上的一點(diǎn),當(dāng)△PBH與△AOC相似時(shí),求符合條件的P點(diǎn)的坐標(biāo)(求出兩點(diǎn)即可);
(3)過點(diǎn)C作CD∥AB,CD交拋物線于點(diǎn)D,點(diǎn)M是線段CD上的一動(dòng)點(diǎn),作直線MN與線段AC交于點(diǎn)N,與x軸交于點(diǎn)E,且∠BME=∠BDC,當(dāng)CN的值最大時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),某中學(xué)在體育課中加強(qiáng)了學(xué)生的長跑訓(xùn)練.在一次女子800米耐力測(cè)試中,小靜和小茜在校園內(nèi)200米的環(huán)形跑道上同時(shí)起跑,同時(shí)到達(dá)終點(diǎn);所跑的路程S(米)與所用的時(shí)間t(秒)之間的函數(shù)圖象如圖所示,則她們第一次相遇的時(shí)間是起跑后的第(  )秒

A. 80 B. 105 C. 120 D. 150

查看答案和解析>>

同步練習(xí)冊(cè)答案