【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù))與反比例函數(shù)的圖象交于點A(﹣1,2),Bm,﹣1).

(1)求這兩個函數(shù)的表達式;

(2)在x軸上是否存在點Pn,0)(n>0),使ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.

【答案】1,y=﹣x+1;(2n=

【解析】試題分析:(1)利用待定系數(shù)法即可解決問題;

2)分三種情形討論:①PA=PB,② AP=AB,③BP=BA.分別解方程即可解決問題;

試題解析:(1)把A(﹣1,2)代入,得到k2=﹣2,∴反比例函數(shù)的解析式為

Bm,﹣1)在上,∴m=2,由題意得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1

2)∵A(﹣12),B2,﹣1),∴AB=,分三種情況討論:

①當(dāng)PA=PB時,(n+12+4=(n22+1,∴n=0,∵n0,∴n=0不合題意舍棄.

②當(dāng)AP=AB時,22+(n+12=(2,∵n0,∴n=﹣1+

③當(dāng)BP=BA時,12+(n22=(2,∵n0,∴n=2+

綜上所述,n=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個數(shù)是( 。

1)若,則

2)若,則

3)若,則

4)若兩個角互補,則這兩個角是鄰補角

5)有公共頂點且有一條公共邊的兩個角是鄰補角

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計的作矩形的尺規(guī)作圖過程,已知:

求作:矩形

作法:如圖,

①作線段的垂直平分線角交于點;

②連接并延長,在延長線上截取

③連接

所以四邊形即為所求作的矩形

根據(jù)小東設(shè)計的尺規(guī)作圖過程

1)使用直尺和圓規(guī),補全圖形:(保留作圖痕跡)

2)完成下邊的證明:

證明: ,,

四邊形是平行四邊形( )(填推理的依據(jù))

四邊形是矩形( )(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOCBOC互余,OD平分BOC,EOC2∠AOE

1)若AOD75°,AOE的度數(shù)

2)若DOE54°,EOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017浙江省溫州市)如圖,矩形OABC的邊OAOC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OABD與四邊形OABD關(guān)于直線OD對稱(點A′和AB′和B分別對應(yīng)).若AB=1,反比例函數(shù)k0)的圖象恰好經(jīng)過點A′,B,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BDDF,連接CF、BE.

(1)求證:DBDE;

(2)求證:直線CF為⊙O的切線

(3)若CF4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,且以為邊向外作正方形,其面積分別為,若,則的值為(

A. 24B. 36C. 48D. 60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A在數(shù)軸上對應(yīng)的數(shù)為-2.

(1)B在點A右邊距離A4個單位長度,則點B所對應(yīng)的數(shù)是_____.

(2)(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點B以每秒3個單位長度沿數(shù)軸向右運動.現(xiàn)兩點同時運動,當(dāng)點A運動到-6的點處時,求A、B兩點間的距離.

(3)(2)的條件下,現(xiàn)A點靜止不動,B點以原速沿數(shù)軸向左運動,經(jīng)過多長時間A、B兩點相距4個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為4的正方形ABCD,頂點A與坐標(biāo)原點重合,一反比例函數(shù)圖象過頂點C,動點P以每秒1個單位速度從點A出發(fā)沿AB方向運動,動點Q同時以每秒4個單位速度從D點出發(fā)沿正方形的邊DCCBBA方向順時針折線運動,當(dāng)點P與點Q相遇時停止運動,設(shè)點P的運動時間為t

1)求出該反比例函數(shù)解析式;

2)連接PD,當(dāng)以點Q和正方形的某兩個頂點組成的三角形和△PAD全等時,求點Q的坐標(biāo);

3)用含t的代數(shù)式表示以點Q、PD為頂點的三角形的面積s,并指出相應(yīng)t的取值.

查看答案和解析>>

同步練習(xí)冊答案