【題目】設(shè)都是整數(shù),且每個(gè)數(shù)都滿足都滿足,若的最小值是的最小值是,...,則的最小值是(

A.B.C.D.

【答案】D

【解析】

根據(jù)已知得出a15+a25+…+a20125=-a+b+32d=100+30d,再利用取最小值與最大值得出db的值,進(jìn)而分析得出答案.

解:因?yàn)?/span>-1≤ai≤2
所以設(shè)有a個(gè)-1b個(gè)1,c個(gè)0,d個(gè)2,
因?yàn)?/span>a1+a2+……+a2020=100
所以-a+b+2d=100,
所以-a+b+8d=100+6d,-a+b+32d=100+30d
因?yàn)?/span>a13+a23+…+a20203的最小值是106,a15+a25+…+a20205的最小值是130,
所以d=1
……,
所以-a+b+512d=100+510d=610
所以a19+a29+……+a20209的最小值是610
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地高速鐵路建設(shè)成功,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),圖中的折線表示yx之間的函數(shù)關(guān)系,下列說法:

①甲、乙兩地相距1800千米;

②點(diǎn)B的實(shí)際意義是兩車出發(fā)后4小時(shí)相遇;

m6n900;

④動車的速度是450千米/小時(shí).

其中不正確的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)和點(diǎn).

(1)求拋物線的解析式;

(2)為拋物線上的一個(gè)動點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為.當(dāng)點(diǎn)落在該拋物線上時(shí),求的值;

(3)是拋物線上一動點(diǎn),連接,以為邊作圖示一側(cè)的正方形,隨著點(diǎn)的運(yùn)動,正方形的大小與位置也隨之改變,當(dāng)頂點(diǎn)恰好落在軸上時(shí),求對應(yīng)的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),直線l的解析式為y=-xb,且與x軸,y軸分別交于點(diǎn)A、B.平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個(gè)單位長度的速度運(yùn)動,與x軸,y軸分別交于點(diǎn)C,D,運(yùn)動時(shí)間為t秒(0tb),將△OCD沿著直線m翻折得到△ECD.若△ECD和△OAB的重合部分的面積為S(設(shè)t0b時(shí),S0),且St之間的函數(shù)關(guān)系的圖象如圖(2)所示,則圖象中的最高點(diǎn)P的坐標(biāo)是( )

A.,3B.3,3C.,D.3,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家“垃圾分類進(jìn)校園”的號召,某校準(zhǔn)備購買新的分類垃圾箱進(jìn)行更換,已知購買5個(gè)A類垃圾箱和4個(gè)B類垃圾箱需花費(fèi)1600元,購買3個(gè)A類垃圾箱的費(fèi)用恰好等于購買4個(gè)B類垃圾箱的費(fèi)用.

1)求購買一個(gè)A類垃圾箱和一個(gè)B類垃圾箱各需多少元;

2)該校計(jì)劃用不超過9000元的經(jīng)費(fèi)購買A類和B類垃圾箱共50個(gè),其中A類垃圾箱的數(shù)量不低于25個(gè),則本次可以選擇的方案有幾種;

3)在(2)的條件下哪種方案的費(fèi)用最低,最低費(fèi)用是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形邊長為的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,是以為圓心,為半徑的一段圓弧,請用無刻度的直尺畫圖(保留連線痕跡).

1的長為

2)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為 ,連接

如圖 1,若的中點(diǎn),請?jiān)诰W(wǎng)格中畫出,使

如圖 2,連接,請?jiān)诰W(wǎng)格中畫出點(diǎn),使的值最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90,AC=BC=1,E、F為線段AB上兩動點(diǎn),且∠ECF=45°,過點(diǎn)E、F分別作BCAC的垂線相交于點(diǎn)M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;②AF+BE=EF;③當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),MH=;其中正確結(jié)論的個(gè)數(shù)是(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.購買張彩票就中獎(jiǎng)是不可能事件

B.概率為的事件是不可能事件

C.任意畫一個(gè)六邊形,它的內(nèi)角和等于是必然事件

D.中任取個(gè)不同的數(shù),分別記為,那么的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 的對角線 AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

同步練習(xí)冊答案