【題目】如圖,菱形ABCD頂點(diǎn)A在例函數(shù)y=(x>0)的圖象上,函數(shù) y=(k>3,x>0)的圖象關(guān)于直線AC對稱,且經(jīng)過點(diǎn)B、D兩點(diǎn),若AB=2,∠DAB=30°,則k的值為______.
【答案】6+2
【解析】
連接OC,AC過A作AE⊥x軸于點(diǎn)E,延長DA與x軸交于點(diǎn)F,過點(diǎn)D作DG⊥x軸于點(diǎn)G,得O、A、C在第一象限的角平分線上,求得A點(diǎn)坐標(biāo),進(jìn)而求得D點(diǎn)坐標(biāo),便可求得結(jié)果.
解:連接OC,AC過A作AE⊥x軸于點(diǎn)E,延長DA與x軸交于點(diǎn)F,過點(diǎn)D作DG⊥x軸于點(diǎn)G,
∵函數(shù)y=(k>3,x>0)的圖象關(guān)于直線AC對稱,
∴O、A、C三點(diǎn)在同一直線上,且∠COE=45°,
∴OE=AE,
不妨設(shè)OE=AE=a,則A(a,a),
∵點(diǎn)A在在反比例函數(shù)y=(x>0)的圖象上,
∴a2=3,
∴a=,
∴AE=OE=,
∵∠BAD=30°,
∴∠OAF=∠CAD=∠BAD=15°,
∵∠OAE=∠AOE=45°,
∴∠EAF=30°,
∴AF==2,EF=AEtan30°=1,
∵AB=AD=2,AE∥DG,
∴EF=EG=1,DG=2AE=2,
∴OG=OE+EG=+1,
∴D(+1,2),
∴k=
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是斜邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:BD=AF;
(2)判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道良好的坐姿有利于青少年骨骼生長,有利于身體健康,那么首先要有正確的寫字坐姿,身子上半部坐直,頭部端正、目視前方,兩手放在桌面上,兩腿平放,胸膛挺起,理想狀態(tài)下,如圖1所示,將圖1中的眼睛記為點(diǎn)A,腹記為點(diǎn)B,筆尖記為點(diǎn)D,且BD與桌沿的交點(diǎn)記為點(diǎn)C
(1)若∠ADB=53°,∠B=60°,求A到BD的距離及C、D兩點(diǎn)間的距離(結(jié)果精確到1cm).
(2)老師發(fā)現(xiàn)小紅同學(xué)寫字姿勢不正確,眼睛傾斜至圖2的點(diǎn)E,點(diǎn)E正好在CD的垂直平分線上,且∠BDE=60°,于是要求其糾正為正確的姿勢.求眼睛所在的位置應(yīng)上升的距離.(結(jié)果精確到1cm)
參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,.tan53°≈1.33,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:(1)4a+2b+c<0;(2)方程ax2+bx+c=0兩根都大于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過第二象限.其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,三角形的三條角平分線交于一點(diǎn),這個(gè)點(diǎn)稱為三角形的內(nèi)心(即三角形內(nèi)切圓的圓心) . 現(xiàn)在規(guī)定,如果四邊形的四條角平分線交于一點(diǎn),我們把這個(gè)點(diǎn)稱為“四邊形的內(nèi)心”.
問題提出
(1)如圖1,在△ABC中,∠C=90°,點(diǎn)O為△ABC的內(nèi)心,若直線DE分別交邊AC、BC于點(diǎn)D、E,且點(diǎn)O仍然為四邊形ABED的內(nèi)心,這樣的直線DE可以畫多少條?請?jiān)趫D1中畫出一條符合條件的直線DE,并簡要說明畫法.
問題探究
(2)如圖2,在△ABC中,∠C=90°, AC=3, BC=4,若滿足(1)中條件的一條直線DE // AB,求此時(shí)線段DE的長;
問題解決
(3)如圖3,在△ABC中,∠C=90°, AC=3,BC=4,問滿足(1)中條件的線段DE是否存在最小值?如果存在,請求出這個(gè)值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校實(shí)施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖1,2).請根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)分別是矩形ABCD的邊AD,AB上的點(diǎn),若EF=EC,且EF⊥EC.
(1)求證:△AEF≌△DCE;
(2)若CD=1,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠ABC=90°,AB=BC,點(diǎn) D 是線段 AB 上的一點(diǎn),連結(jié) CD.過點(diǎn) B 作 BG⊥CD,分別交 CD、CA 于點(diǎn) E、F,與過點(diǎn) A 且垂直于 AB 的直線相交于點(diǎn) G,連結(jié) DF,給出以下四個(gè)結(jié)論:①;②若AB,則點(diǎn) D 是 AB 的中點(diǎn);③若,則 S△ABC=9S△BDF;④當(dāng) B、C、F、D 四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;其中正確的結(jié)論序號是( )
A.①②B.①②④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,以為直徑作半圓,圓心為點(diǎn);以點(diǎn)為圓心,為半徑作,過點(diǎn)作的平行線交兩弧于點(diǎn)、,則圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com