【題目】如圖,把八個(gè)等圓按相鄰兩兩外切擺放,其圓心連線構(gòu)成一個(gè)正八邊形,設(shè)正八邊形內(nèi)側(cè)八個(gè)扇形(無陰影部分)面積之和為S1 , 正八邊形外側(cè)八個(gè)扇形(陰影部分)面積之和為S2 , 則 =( )
A.
B.
C.
D.1
【答案】B
【解析】解:∵正八邊形的內(nèi)角和為(8﹣2)×180°=6×180°=1080°,
正八邊形外側(cè)八個(gè)扇形(陰影部分)的內(nèi)角和為360°×8﹣1080°=2880°﹣1080°=1800°,
∴ = = .
故選:B.
先根據(jù)正多邊形的內(nèi)角和公式可求正八邊形的內(nèi)角和,根據(jù)周角的定義可求正八邊形外側(cè)八個(gè)扇形(陰影部分)的內(nèi)角和,再根據(jù)半徑相等的扇形面積與圓周角成正比即可求解.考查了扇形面積的計(jì)算,求不規(guī)則的圖形的面積,可以轉(zhuǎn)化為幾個(gè)規(guī)則圖形的面積的和或差來求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實(shí)施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號(hào)召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實(shí)現(xiàn)目標(biāo)?
(3)某企業(yè)投入1000萬元設(shè)備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費(fèi)用為1.5元,政府補(bǔ)貼0.3元.企業(yè)將淡化水以3.2元/m3的價(jià)格出售,每年還需各項(xiàng)支出40萬元.按每年實(shí)際生產(chǎn)300天計(jì)算,該企業(yè)至少幾年后能收回成本(結(jié)果精確到個(gè)位)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點(diǎn)E,∠ABC、∠BCD的角平分線交于點(diǎn)F.
(1)若∠F=70°,則∠ABC+∠BCD= ______ °;∠E= ______ °;
(2)探索∠E與∠F有怎樣的數(shù)量關(guān)系,并說明理由;
(3)給四邊形ABCD添加一個(gè)條件,使得∠E=∠F,所添加的條件為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D 為 AB的中點(diǎn).
(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).
①若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD 與△CQP 全等?
(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=5x+5交x軸于點(diǎn)A,交y軸于點(diǎn)C,過A,C兩點(diǎn)的二次函數(shù)y=ax2+4x+c的圖象交x軸于另一點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)連接BC,點(diǎn)N是線段BC上的動(dòng)點(diǎn),作ND⊥x軸交二次函數(shù)的圖象于點(diǎn)D,求線段ND長度的最大值;
(3)若點(diǎn)H為二次函數(shù)y=ax2+4x+c圖象的頂點(diǎn),點(diǎn)M(4,m)是該二次函數(shù)圖象上一點(diǎn),在x軸、y軸上分別找點(diǎn)F,E,使四邊形HEFM的周長最小,求出點(diǎn)F,E的坐標(biāo).
溫馨提示:在直角坐標(biāo)系中,若點(diǎn)P,Q的坐標(biāo)分別為P(x1 , y1),Q(x2 , y2),
當(dāng)PQ平行x軸時(shí),線段PQ的長度可由公式PQ=|x1﹣x2|求出;
當(dāng)PQ平行y軸時(shí),線段PQ的長度可由公式PQ=|y1﹣y2|求出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),菱形ABCD對角線AC、BD的交點(diǎn)O是四邊形EFGH對角線FH的中點(diǎn),四個(gè)頂點(diǎn)A、B、C、D分別在四邊形EFGH的邊EF、FG、GH、HE上.
(1)求證:四邊形EFGH是平行四邊形;
(2)如圖(2)若四邊形EFGH是矩形,當(dāng)AC與FH重合時(shí),已知 =2,且菱形ABCD的面積是20,求矩形EFGH的長與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是一片水田,某村民小組需計(jì)算其面積,測得如下數(shù)據(jù):
∠A=90°,∠ABD=60°,∠CBD=54°,AB=200m,BC=300m.
請你計(jì)算出這片水田的面積.
(參考數(shù)據(jù):sin54°≈0.809,cos54°≈0.588,tan54°≈1.376, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市2016年四月每日的最低氣溫(℃)的統(tǒng)計(jì)圖,則在四月份每日的最低氣溫這組數(shù)據(jù)中,中位數(shù)和眾數(shù)分別是( )
A.14℃,14℃
B.15℃,15℃
C.14℃,15℃
D.15℃,14℃
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com