【題目】如圖,一次函數(shù)y=﹣x+4的圖象與x軸y軸分別交于點(diǎn)A、點(diǎn)B,與正比例函數(shù)y=x的圖象交于點(diǎn)C,將點(diǎn)C向右平移1個(gè)單位,再向下平移6個(gè)單位得點(diǎn)D.
(1)求△OAB的周長(zhǎng);
(2)求經(jīng)過D點(diǎn)的反比例函數(shù)的解析式;
【答案】(1)12+4(2)y=-
【解析】
(1)根據(jù)題意可求A,B坐標(biāo),勾股定理可求AB長(zhǎng)度,即可求△OAB的周長(zhǎng).
(2)把兩個(gè)函數(shù)關(guān)系式聯(lián)立成方程組求解,即為C點(diǎn)坐標(biāo),通過平移可求D點(diǎn)坐標(biāo),用待定系數(shù)法可求反比例函數(shù)解析式.
(1)∵一次函數(shù)y=﹣x+4的圖象與x軸y軸分別交于點(diǎn)A、點(diǎn)B,
∴A(8,0),B(0,4)
∴OA=8,OB=4
在Rr△AOB中,AB==4,
∴△OAB的周長(zhǎng)=4+8+4=12+4
(2)∵,
∴
∴C點(diǎn)坐標(biāo)為(2,3)
∵將點(diǎn)C向右平移1個(gè)單位,再向下平移6個(gè)單位得點(diǎn)D.
∴D(3,﹣3)
設(shè)過D點(diǎn)的反比例函數(shù)解析式y=,
∴k=3×(﹣3)=﹣9
∴反比例函數(shù)解析式y=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電信公司手機(jī)的A類收費(fèi)標(biāo)準(zhǔn)如下:不管通話時(shí)間多長(zhǎng),每部手機(jī)每月必須繳月租費(fèi)12元,另外,通話費(fèi)按元計(jì);B類收費(fèi)標(biāo)準(zhǔn)如下:沒有月租費(fèi),但通話費(fèi)按元計(jì)按照此類收費(fèi)標(biāo)準(zhǔn)完成下列各題:
直接寫出每月應(yīng)繳費(fèi)用元與通話時(shí)長(zhǎng)分之間的關(guān)系式:
A類:______B類:______
若每月平均通話時(shí)長(zhǎng)為300分鐘,選擇______類收費(fèi)方式較少.
求每月通話多長(zhǎng)時(shí)間時(shí),按兩類收費(fèi)標(biāo)準(zhǔn)繳費(fèi),所繳話費(fèi)相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D.
試說明:AC∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AD是直徑,BC是弦,D為 的中點(diǎn),直徑AD交BC于點(diǎn)E,AE=5,ED=1,則BC的長(zhǎng)是m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,G是邊長(zhǎng)為8的正方形ABCD的邊BC上的一點(diǎn),矩形DEFG的邊EF過點(diǎn)A,GD=10.
(1)求FG的長(zhǎng);
(2)直接寫出圖中與△BHG相似的所有三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,BC=CD,E,F,G,H分別為AB,BC,CD,AD的中點(diǎn),順次連接E,G,F,H,求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+6分別交x軸、y軸于A、B兩點(diǎn),拋物線y=﹣ x2+8,與y軸交于點(diǎn)D,點(diǎn)P是拋物線在第一象限部分上的一動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C.
(1)點(diǎn)A的坐標(biāo)為 , 點(diǎn)D的坐標(biāo)為;
(2)探究發(fā)現(xiàn):
①假設(shè)P與點(diǎn)D重合,則PB+PC=;(直接填寫答案)
②試判斷:對(duì)于任意一點(diǎn)P,PB+PC的值是否為定值?并說明理由;
(3)試判斷△PAB的面積是否存在最大值?若存在,求出最大值,并求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=9°,點(diǎn)A在OB上,且OA=1,按下列要求畫圖:
以A為圓心,1為半徑向右畫弧交OC于點(diǎn)A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點(diǎn)A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點(diǎn)A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com