【題目】制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800 ℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過8min時(shí),材料溫度降為600℃,煅燒時(shí)溫度y(℃)與時(shí)間x(min)成一次函數(shù)關(guān)系;鍛造時(shí),溫度y(℃)與時(shí)間x(min)成反比例函數(shù)關(guān)系(如圖),已知該材料初始溫度是26 ℃.
(1)分別求出材料煅燒和鍛造時(shí)y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于400℃時(shí),須停止操作,那么鍛造的操作時(shí)間有多長(zhǎng)?
【答案】(1)材料煅燒時(shí):,鍛造時(shí):;(2)鍛造的操作時(shí)間有6min
【解析】
(1)首先根據(jù)題意,材料煅燒時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;鍛造操作時(shí),溫度y與時(shí)間x成反比例關(guān)系,將題中數(shù)據(jù)代入用待定系數(shù)法可得兩個(gè)函數(shù)的關(guān)系式;
(2)把y=480代入中,進(jìn)一步求解可得答案.
解:(1)設(shè)材料鍛造時(shí)y關(guān)于x的函數(shù)解析式為,將點(diǎn)C(8,600)代入得,
.
當(dāng)時(shí),,解得,
∴點(diǎn)B的坐標(biāo)為(6,800),鍛造時(shí)y關(guān)于x的函數(shù)解析式為.
設(shè)材料煅燒時(shí)y關(guān)于x的函數(shù)解析式為,將點(diǎn)A(0,26),點(diǎn)B(6,800)代入得,
,解得,
∴材料煅燒時(shí)y關(guān)于x的函數(shù)解析式為.
(2)把代入,得,
,
∴鍛造的操作時(shí)間有6min.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE丄AB,垂足為D,EF//AC,
(1)求的度數(shù);
(2)連接BE,若BE同時(shí)平分和,問EF與BF垂直嗎? 為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.調(diào)查全校建檔立卡戶學(xué)生的人數(shù),宜采用抽樣調(diào)查
B.隨機(jī)抽取某班7名學(xué)生的數(shù)學(xué)成績(jī):105,102,105,113,116,105,119,則數(shù)據(jù)的中位數(shù)和眾數(shù)都是105
C.通過對(duì)甲、乙兩組學(xué)生數(shù)學(xué)成績(jī)的跟蹤調(diào)查,整理得知兩組數(shù)據(jù)的方差分別為:=0.123,=0.362,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
D.必然事件發(fā)生的概率為1,隨機(jī)事件發(fā)生的概率為0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連結(jié)CE交AD于點(diǎn)F,連結(jié)BD交CE于點(diǎn)G,連結(jié)BE. 下列結(jié)論中:① CE=BD; ②△ADC是等腰直角三角形;
③∠ADB=∠AEB; ④ CD·AE=EF·CG;
一定正確的結(jié)論有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為直角梯形, , ,.點(diǎn)從出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向運(yùn)動(dòng);點(diǎn)從同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)作垂直軸于點(diǎn),連接交于,連接.
(1) 求的面積與運(yùn)動(dòng)時(shí)間的函數(shù)關(guān)系式, 并寫出自變量的取值范圍, 當(dāng)為何值時(shí),的值最大?
(2)是否存在點(diǎn),使得為直角三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
(3) 當(dāng)為以為底的等腰三角形時(shí),求值.
(4) 是否存在這樣的值,使直線將的周長(zhǎng)和面積同時(shí)平分?若存在,求出值,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2x+3.
(1)求它的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)求該拋物線與x軸的交點(diǎn)坐標(biāo);
(3)建立平面直角坐標(biāo)系,畫出這條拋物線的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于點(diǎn),點(diǎn)為上一點(diǎn),連接,過點(diǎn)作交的延長(zhǎng)線于點(diǎn),交于點(diǎn),且
(1)求證:
(2)若,,求的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).
(1)求證:直線l恒過拋物線C的頂點(diǎn);
(2)若a>0,h=1,當(dāng)t≤x≤t+3時(shí),二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.
(3)點(diǎn)P為拋物線的頂點(diǎn),Q為拋物線與直線l的另一個(gè)交點(diǎn),當(dāng)1≤k≤3時(shí),若線段PQ(不含端點(diǎn)P,Q)上至少存在一個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以圓O為圓心,半徑為1的弧交坐標(biāo)軸于A,B兩點(diǎn),P是弧上一點(diǎn)(不與A,B重合),連接OP,設(shè)∠POB=α,則點(diǎn)P的坐標(biāo)是
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com