【題目】如圖,AB是O的直徑,AE交O于點E,且與O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.
【答案】
(1)證明:連接OC.
∵CD是⊙O的切線,
∴CD⊥OC,
又∵CD⊥AE,
∴OC∥AE,
∴∠1=∠3,
∵OC=OA,
∴∠2=∠3,
∴∠1=∠2,
即∠EAC=∠CAB;
(2)解:①連接BC.
∵AB是⊙O的直徑,CD⊥AE于點D,
∴∠ACB=∠ADC=90°,
∵∠1=∠2,
∴△ACD∽△ABC,
∴ ,
∵AC2=AD2+CD2=42+82=80,
∴AB= =10,
∴⊙O的半徑為10÷2=5.
②連接CF與BF.
∵四邊形ABCF是⊙O的內(nèi)接四邊形,
∴∠ABC+∠AFC=180°,
∵∠DFC+∠AFC=180°,
∴∠DFC=∠ABC,
∵∠2+∠ABC=90°,∠DFC+∠DCF=90°,
∴∠2=∠DCF,
∵∠1=∠2,
∴∠1=∠DCF,
∵∠CDF=∠CDF,
∴△DCF∽△DAC,
∴ ,
∴DF= =2,
∴AF=AD﹣DF=8﹣2=6,
∵AB是⊙O的直徑,
∴∠BFA=90°,
∴BF= =8,
∴tan∠BAD= .
【解析】(1)首先連接OC,由CD是⊙O的切線,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根據(jù)平行線的性質(zhì)與等腰三角形的性質(zhì),即可證得∠EAC=∠CAB;(2)①連接BC,易證得△ACD∽△ABC,根據(jù)相似三角形的對應(yīng)邊成比例,即可求得AB的長,繼而可得⊙O的半徑長;②連接CF與BF.由四邊形ABCF是⊙O的內(nèi)接四邊形,易證得△DCF∽△DAC,然后根據(jù)相似三角形的對應(yīng)邊成比例,求得AF的長,又由AB是⊙O的直徑,即可得∠BFA是直角,利用勾股定理求得BF的長,即可求得tan∠BAE的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動點,連結(jié)AC并延長交⊙O于D,過點D作圓的切線交OB的延長線于E,已知OA=8.
(1)求證:∠ECD=∠EDC;
(2)若tanA= ,求DE長;
(3)當(dāng)∠A從15°增大到30°的過程中,求弦AD在圓內(nèi)掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,E為CD上一點,分別以EA,EB為折痕將兩個角(∠D,∠C)向內(nèi)折疊,點C,D恰好落在AB邊的點F處.若AD=2,BC=3,則EF的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1 , A2在射線OA上,B1在射線OB上,依次作A2B2∥A1B1 , A3B2∥A2B1 , A3B3∥A2B2 , A4B3∥A3B2 , ….若△A2B1B2和△A3B2B3的面積分別為1、9,則△A1007B1007A1008的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點O,且與直線y=x﹣2交于B,C兩點.
(1)求拋物線的頂點A的坐標(biāo)及點B,C的坐標(biāo);
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點P,使△PBC的面積最大?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(4)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O(shè),M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,CD⊥AB于點C,交半圓于點E,DF切半圓于點F.已知∠AEF=135°.
(1)求證:DF∥AB;
(2)若OC=CE,BF= ,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com