【題目】甲、乙兩個公司為某敬老院各捐款300000元.已知甲公司的人數(shù)比乙公司的人數(shù)多20%,乙公司比甲公司人均多捐款20元.則甲、乙兩公司各有多少元?
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生的課外閱讀情況,就“我最喜愛的課外讀物”對文學、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學只選一類),并根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)這次被調(diào)查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整;并在扇形統(tǒng)計圖中,計算出“其他類”所對應的圓心角的度數(shù);
(3)若該校有2400名學生,請你估計該校喜愛“科普類”的學生有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在數(shù)軸l上,一動點Q從原點O出發(fā),沿直線l以每秒鐘2個單位長度的速度來回移動,其移動方式是先向右移動1個單位長度,再向左移動2個單位長度,又向右移動3個單位長度,再向左移動4個單位長度,又向右移動5個單位長度…
(1)求出5秒鐘后動點Q所處的位置;
(2)如果在數(shù)軸l上還有一個定點A,且A與原點O相距20個單位長度,問:動點Q從原點出發(fā),可能與點A重合嗎?若能,則第一次與點A重合需多長時間?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD相交于O點,AB=5,AC=6,過D點作DE//AC交BC的延長線于E點
(1)求△BDE的周長
(2)點P為線段BC上的點,連接PO并延長交AD于點Q,求證:BP=DQ
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“低碳環(huán)保,你我同行”.儀征市區(qū)的公共自行車給市民出行帶來不少方便.我校數(shù)學社團小學員走進小區(qū)隨機選取了市民進行調(diào)查,調(diào)查的問題是“您大概多久使用一次公共自行車?”,將本次調(diào)查結(jié)果歸為四種情況: A.每天都用;B.經(jīng)常使用;C.偶爾使用;D.從未使用.
將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計圖:
根據(jù)圖中的信息,解答下列問題:
(1)本次活動共有位市民參與調(diào)查;
(2)補全條形統(tǒng)計圖;
(3)根據(jù)統(tǒng)計結(jié)果,若市區(qū)有26萬市民,請估算每天都用公共自行車的市民約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先讓我們一起來學習方程m2+1= 的解法:
解:令m2=a,則a+1= ,方程兩邊平方可得,(a+1)2=a+3
解得a1=1,a2=﹣2,∵m2≥0∴m2=1∴m=±1
點評:類似的方程可以用“整體換元”的思想解決.
不妨一試:
如圖1,在平面直角坐標系xOy中,拋物線y=ax2+1經(jīng)過點A(4,﹣3),頂點為點B,點P為拋物線上的一個動點,l是過點(0,2)且垂直于y軸的直線,過P作PH⊥l,垂足為H,連接PO.
(1)求拋物線的解析式;
(2)①當P點運動到A點處時,通過計算發(fā)現(xiàn):POPH(填“>”、“<”或“=”);
(3)當△PHO為等邊三角形時,求點P坐標;
(4)如圖2,設點C(1,﹣2),問是否存在點P,使得以P、O、H為頂點的三角形與△ABC相似?若存在,求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仔細觀察下面由“※”組成的圖案和算式,解答問題:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)請計算:
1+3+5+7+9+ … +19= ;
(2)請猜想:
1+3+5+7+9+ … +(2n-1)+(2n+1)+(2n+3)= ;
(3)請用上述規(guī)律計算:
103+105+107+ … +2013+2015
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校八年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖.
(1)本次抽測的男生有 人,抽測成績的眾數(shù)是 ;
(2)請你將圖2的統(tǒng)計圖補充完整;
(3)若規(guī)定引體向上5次以上(含5次)為體能達標,則該校400名八年級男生中估計有多少人體能達標?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠B=90°,∠C=30°,點D從C點出發(fā)沿著CA方向以2個單位每秒的速度向終點A運動,同時點E從點A出發(fā)沿AB方向以1個單位每秒的速度向終點B運動。設點D,E的運動時間為t秒,DF⊥BC于F
(1)求證:AE=DF;
(2)如圖2,連接EF,
①是否存在t,使得四邊形AEFD為菱形?若存在,求出t的值;若不存在,請說明理由
②連接DE,當△DEF是直角三角形時,求t的值
圖1 圖2 備用圖 備用圖
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com