【題目】如圖,ABC 為等腰直角三角形,∠ACB90°,點 M AB 邊的中點,點 N 為射線 AC 上一點,連接 BN,過點 C CDBN 于點 D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點 E,若 AB20,MD14,則 NE 的長為___.

【答案】

【解析】

連接CM,過點MMFBDF,根據(jù)等腰直角三角形的性質(zhì)求出BMBC,證出C、M、B、D四點共圓,根據(jù)圓周角定理的推論和等腰三角形的判定證出△DMF為等腰直角三角形,利用勾股定理和銳角三角函數(shù)求出BDBN,然后證出△NDE∽△MDB列出比例式即可求出結(jié)論.

解:連接CM,過點MMFBDF

ABC 為等腰直角三角形,∠ACB90°,點 M AB 邊的中點,AB20

BM=AB=10,AC=BC=20,∠CMB=90°,∠BCM=ACB45°

CDBN

∴∠CDB=90°

∴∠CDB+∠CMB=180°

C、MB、D四點共圓

∴∠MDB=BCM=45°,∠DCB=BMD

∴△DMF為等腰直角三角形

MD14

MF=DF=14

RtBMF中,BF=

BD=BFDF=16

cosCBN=

解得:BN=25

DN=BNBD=9

∵∠BNE=∠BNA,而∠DCN∠BNA=90°

∴∠BNE+∠DCN=90°

∵∠DCN+∠DCB=90°

∴∠BNE=DCB

∴∠BNE=BMD

∵∠NDE=MDB

∴△NDE∽△MDB

解得:NE=

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】有兩張完全重合的矩形紙片,將其中一張繞點順時針旋轉(zhuǎn)后得到矩形(如圖1),連接,若

1)試探究線段與線段的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

2)把剪去,將繞點順時針旋轉(zhuǎn)得,邊于點(如圖2),設旋轉(zhuǎn)角為,當為等腰三角形時,求的度數(shù);

3)若將沿方向平移得到(如圖3),交于點交于點,當時,求平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tanAOD=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的中點,的中點,過點的延長線于點,連接

求證:(1;

2)四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于二次函數(shù),以下結(jié)論:①拋物線交軸有兩個不同的交點;②不論取何值,拋物線總是經(jīng)過一個定點;③設拋物線交軸于兩點,若,則④拋物線的頂點在圖象上;⑤拋物線交軸于點,若是等腰三角形,則,,.其中正確的序號是(

A. ①②⑤ B. ②③④ C. ①④⑤ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的邊AB的解析式為yax+2,頂點C,D在雙曲線yk0)上.若AB2AD,則k_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校隨機對本校部分學生進行假期中,我在家可以這么做:.扎實學習、.快樂游戲、.經(jīng)典閱讀、.分擔勞動、.樂享健康網(wǎng)絡調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(若每一位同學只能選擇一項),請根據(jù)圖中信息,回答下列問題.

1)這次調(diào)查的總?cè)藬?shù)是___________人;

2)請補全條形統(tǒng)計圖,并說明扇形統(tǒng)計圖中所對應的圓心角是___________度;

3)若該學校共有學生1700人,則選擇有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB相交,連接CO,過點D作⊙O的切線,與AB的延長線交于點E,若DEAC,∠BAC40°,則∠OCD的度數(shù)為(

A.65°B.30°C.25°D.20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為推動陽光體育運動的廣泛開展,引導學生走向大自然,走到陽光下積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現(xiàn)從各年級隨機抽取了部分學生的鞋號,繪制了如圖所示兩個統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:

1)求本次抽樣調(diào)查的學生人數(shù)

2)通過計算補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

3)若學生計劃購買200雙運動鞋,建議購買35號運動鞋約多少雙?

查看答案和解析>>

同步練習冊答案