【題目】如圖,AB為⊙O的直徑,弦,,的平分線交⊙O于點(diǎn)D,求:

1BC,AD的長(zhǎng);

2)圖中兩陰影部分面積之和.

【答案】(1), (2)

【解析】

1)根據(jù)直徑得出∠ACB=∠ADB90,根據(jù)勾股定理求出BC,根據(jù)圓周角定理求出ADBD,求出AD即可;

2)根據(jù)三角形的面積公式,求出△AOC和△AOD的面積,再求出S扇形COD,即可求出答案.

1)∵AB是直徑,

∴∠ACB=∠ADB90(直徑所對(duì)的圓周角是直角),

RtABC中,∠ABC30AC4,

AB8,

BC=4

∵∠ACB的平分線交⊙O于點(diǎn)D,

∴∠DCA=∠BCD

,

ADBD

∴在RtABD中,ADBDAB4;

2)連接OCOD

∵∠ABC30,

∴∠AOC2ABC60

OAOB=4,

SAOCSABC××AC×BC××4×44,

由(1)得∠AOD90

∴∠COD150,

SAOD×AO×OD×428,

S陰影S扇形CODSAOCSAOD4-8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸交于點(diǎn)B,與y軸交于點(diǎn)A,直線AB與反比例函數(shù)ym0)在第一象限的圖象交于點(diǎn)C、點(diǎn)D,其中點(diǎn)C的坐標(biāo)為(1,8),點(diǎn)D的坐標(biāo)為(4,n).

1)分別求m、n的值;

2)連接OD,求△ADO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當(dāng)將遮陽傘撐開至OD位置時(shí),測(cè)得∠ODB45°,當(dāng)將遮陽傘撐開至OE位置時(shí),測(cè)得∠OEC30°,且此時(shí)遮陽傘邊沿上升的豎直高度BC20cm,求若當(dāng)遮陽傘撐開至OE位置時(shí)傘下陰涼面積最大,求此時(shí)傘下半徑EC的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸和y軸上,且OAOB,邊AC所在直線解析式為yx,若ABC的內(nèi)心在y軸上,則tanACB的值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB是⊙O的直徑,AB8,點(diǎn)C在⊙O的半徑OA上運(yùn)動(dòng),PCAB,垂足為C,PC5,PT為⊙O的切線,切點(diǎn)為T

1)如圖1,當(dāng)C點(diǎn)運(yùn)動(dòng)到O點(diǎn)時(shí),求PT的長(zhǎng);

2)如圖2,當(dāng)C點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),連接POBT,求證:POBT;

3)如圖3,設(shè)PTy,ACx,求yx的解析式并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABCA點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.

(1)求證:△AEC≌△ADB;

(2)若AB=,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)作物的生長(zhǎng)率P與溫度t(℃)有如下關(guān)系:如圖1,當(dāng)10≤t≤25時(shí)可近似用函數(shù)刻畫;當(dāng)25≤t≤37時(shí)可近似用函數(shù)刻畫.

(1)h的值.

(2)按照經(jīng)驗(yàn),該作物提前上市的天數(shù)m()與生長(zhǎng)率P滿足函數(shù)關(guān)系:

生長(zhǎng)率P

0.2

0.25

0.3

0.35

提前上市的天數(shù)m(天)

0

5

10

15

①請(qǐng)運(yùn)用已學(xué)的知識(shí),求m關(guān)于P的函數(shù)表達(dá)式;

②請(qǐng)用含的代數(shù)式表示m ;

(3)天氣寒冷,大棚加溫可改變農(nóng)作物生長(zhǎng)速度.在(2)的條件下,原計(jì)劃大棚恒溫20℃時(shí),每天的成本為200元,該作物30天后上市時(shí),根據(jù)市場(chǎng)調(diào)查:每提前一天上市售出(一次售完),銷售額可增加600元.因此給大棚繼續(xù)加溫,加溫后每天成本w()與大棚溫度t(℃)之間的關(guān)系如圖2.問提前上市多少天時(shí)增加的利潤(rùn)最大?并求這個(gè)最大利潤(rùn)(農(nóng)作物上市售出后大棚暫停使用).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O ,交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,連接AD,DE

1)求證:DBC的中點(diǎn)

2)若DE=3, AD1,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案