如圖,下列圖案是我國幾家銀行的標(biāo)志,其中軸對稱圖形有
 
A.1個  B. 2個C.3個D.4個
C
根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據(jù)此可知只有第三個圖形不是軸對稱圖形.
解:根據(jù)軸對稱圖形的定義:
第一個圖形和第三個圖形有2條對稱軸,是軸對稱圖形,符合題意;
第二個圖形找不到對稱軸,則不是軸對稱圖形,不符合題意.
第四個圖形有1條對稱軸,是軸對稱圖形,符合題意;
軸對稱圖形共有3個.
故選C.
本題考查了軸對稱與軸對稱圖形的概念.軸對稱的關(guān)鍵是尋找對稱軸,兩邊圖象折疊后可重合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

如圖1,,點在第二象限內(nèi),點軸的負(fù)半軸上,


小題1:求點的坐標(biāo)
小題2:如圖2,將繞點按順時針方向旋轉(zhuǎn)的位置,其中交直線于點,分別交直線于點,則除外,還有哪幾對全等的三角形,請直接寫出答案(不再另外添加輔助線);
小題3:在⑵的基礎(chǔ)上,將繞點按順時針方向繼續(xù)旋轉(zhuǎn),當(dāng)的面積為時,求直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

.如圖,在中,,,將繞點按逆時針方向旋轉(zhuǎn)至,點的坐標(biāo)為(0,4).
小題1:(1)求點的坐標(biāo);
小題2:(2)求過,三點的拋物線的解析式;
小題3:(3)在(2)中的拋物線上存在點,使以為頂點的三角形是等腰直角三角形.請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖①,已知四邊形ABCD是正方形,點E是AB的中點,點F在邊CB的延長線上,且BE=BF,連接EF.

小題1:(1)若取AE的中點P,求證:BP=CF;
小題2:(2)在圖①中,若將繞點B順時針方向旋轉(zhuǎn)(00<<3600),如圖②,是否存在某位置,使得?,若存在,求出所有可能的旋轉(zhuǎn)角的大小;若不存在,請說明理由;
小題3:(3)在圖①中,若將△BEF繞點B順時針旋轉(zhuǎn)(00<<900),如圖③,取AE的中點P,連接BP、CF,求證:BP=CF且BP⊥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列旋轉(zhuǎn)對稱圖形中,旋轉(zhuǎn)角度為的是(   ).
A.等邊三角形 B.正方形C.正五邊形 D.正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個長為4cm,寬為3cm的長方形木板在桌面上做無 滑動的翻滾(順時針方向),木板左上角一點A位置的變 化為A→A1→A2,其中第二次翻滾被面上一小木塊擋 住,使木板與桌面成30°的角,則點A滾到A2位置時 共走過的路徑長為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點A(-2,4),則點A關(guān)于y軸對稱的點的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AB="4" .以斜邊AB的中點D為旋轉(zhuǎn)中心,把△ABC按逆時針方向旋轉(zhuǎn)角(),當(dāng)點A的對應(yīng)點與點C重合時,B,C兩點的對應(yīng)點分別記為E,F,EFAB的交點為G,此時等于         ° ,△DEG的面積為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,
CD=5,則四邊形ABCD的面積為______________

查看答案和解析>>

同步練習(xí)冊答案