【題目】如圖,在等腰△ABC中,AB=BC,以BC為直徑的⊙O與AC相交于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB交CB延長(zhǎng)線于點(diǎn)E,垂足為點(diǎn)F.
(1)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑R=5,且tanC =,求EF的長(zhǎng).
【答案】(1)相切;(2)
【解析】
(1)連接圓心和切點(diǎn),利用平行,OF⊥CB可證得∠ODF=90°;
(2)過(guò)D作DH⊥BC于H,設(shè)BD=k,CD=2k,求得BD=2,CD=4,根據(jù)三角形的面積公式得到DH==4,由勾股定理得到OH==3,根據(jù)三角形相似得到OD2=OHOE,求得OE=,得到BE=,根據(jù)相似三角形的性質(zhì)得到BF=2,根據(jù)勾股定理即可得到結(jié)論.
(1)證明:如圖,連接OD,BD,
∵BC是⊙O的直徑,
∴∠CDB=90°,
∴BD⊥AC.
∵AB=BC,
∴AD=DC.
∵OC=OB,
∴OD∥AB,
∵DE⊥AB,
∴DE⊥OD.
∴直線DE是⊙O的切線.
(2)過(guò)D作DH⊥BC于H,
∵⊙O的半徑R=5,tanC=,
∴BC=10,
設(shè)BD=k,CD=2k,
∴BC=k=10,
∴k=2,
∴BD=2,CD=4,
∴DH==4,
∴OH==3,
∵DE⊥OD,DH⊥OE,
∴OD2=OHOE,
∴OE=,
∴BE=,
∵DE⊥AB,
∴BF∥OD,
∴△BFE∽△ODE,
∴,即,
∴BF=2,
∴EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)O,B的對(duì)應(yīng)點(diǎn)分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)習(xí)小組由3名男生和1名女生組成,在一次合作學(xué)習(xí)后,開(kāi)始進(jìn)行成果展示.
(1)如果隨機(jī)抽取1名同學(xué)單獨(dú)展示,那么女生展示的概率為 ;
(2)如果隨機(jī)抽取2名同學(xué)共同展示,求同為男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA,PB是⊙O的兩條切線,A,B為切點(diǎn),直線OP交⊙O于C,D,交AB于E,AF為⊙O的直徑,下列結(jié)論中正確的有:①∠ABP=∠AOP;②AP=BP;③弧BC=弧DF ;④∠APO=∠BPO;⑤AB⊥PD.
A. ①⑤ B. ②③⑤ C. ①④ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與A,C重合),延長(zhǎng)BD至E.
(1)求證:AD的延長(zhǎng)線平分∠CDE;
(2)若∠BAC=30°,且△ABC底邊BC邊上高為1,求△ABC外接圓的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(14分)如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上.
(1)請(qǐng)直接寫(xiě)出線段BE與線段CD的關(guān)系: ;
(2)如圖2,將圖1中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0<α<360°),
①(1)中的結(jié)論是否成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說(shuō)明理由;
②當(dāng)AC=ED時(shí),探究在△ABC旋轉(zhuǎn)的過(guò)程中,是否存在這樣的角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出角α的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩個(gè)全等的直角三角尺ABC和ADE如圖擺放,∠CAB=∠DAE=90°,∠ACB=∠DEA=30°,使點(diǎn)D落在BC邊上,連結(jié)EB,EC,則下列結(jié)論:①∠DAC=∠DCA;②ED為AC的垂直平分線;③EB平分∠AED;④△ACE為等邊三角形.其中正確的是( )
A.①②③B.①②④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在ABCD中,E是CD延長(zhǎng)線上的一點(diǎn),BE與AD交于點(diǎn)F,DE=CD.
(1)求證:△ABF∽△CEB;
(2)若△DEF的面積為2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)4S店銷(xiāo)售某種型號(hào)的汽車(chē),每輛進(jìn)貨價(jià)為15萬(wàn)元,該店經(jīng)過(guò)一段時(shí)間的市場(chǎng)調(diào)研發(fā)現(xiàn):當(dāng)銷(xiāo)售價(jià)為25萬(wàn)元時(shí),平均每周能售出8輛,而當(dāng)銷(xiāo)售價(jià)每降低0.5萬(wàn)元時(shí),平均每周能多售出1輛.該4S店要想平均每周的銷(xiāo)售利潤(rùn)為90萬(wàn)元,并且使成本盡可能的低,則每輛汽車(chē)的定價(jià)應(yīng)為多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com