【題目】在中,,,點在邊上,把沿折疊后,使得點落在點處,連接,若,則______.
【答案】或;
【解析】
分兩種情形分別求解即可解決問題.
解:如圖1中,當(dāng)點E在直線BC的下方時,
∵AB=AC,∠BAC=90°,
∴∠ABC=45°,
∵△ADB≌△ADE,
∴BD=DE,∠ABD=∠AED=45°,∠DAB=∠DAE,
∴∠DBE=∠DEB=20°
∴∠ABE=∠AEB=65°,
∴∠DAB=(180°-130°)=25°,
∴∠ADC=∠ABC+∠BAD=70°
如圖2中,當(dāng)點E在直線BC的上方時,
易知∠ABE=∠AEB=45°-20°=25°,
∴∠BAD=(180°-50°)=65°,
∴∴∠ADC=∠ABC+∠BAD=110°,
故答案為70°或110°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線y=與x軸、y軸分別交于點B,C,拋物線y=過B,C兩點,且與x軸的另一個交點為點A,連接AC.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點D(與點A不重合),使得S△DBC=S△ABC,若存在,求出點D的坐標(biāo);若不存在,請說明理由;
(3)有寬度為2,長度足夠長的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和點Q,交直線CB于點M和點N,在矩形平移過程中,當(dāng)以點P,Q,M,N為頂點的四邊形是平行四邊形時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識背景
當(dāng)a>0且x>0時,因為(﹣)2≥0,所以x﹣2+≥0,從而x+(當(dāng)x=時取等號).
設(shè)函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當(dāng)x=時,該函數(shù)有最小值為2.
應(yīng)用舉例
已知函數(shù)為y1=x(x>0)與函數(shù)y2=(x>0),則當(dāng)x==2時,y1+y2=x+有最小值為2=4.
解決問題
(1)已知函數(shù)為y1=x+3(x>﹣3)與函數(shù)y2=(x+3)2+9(x>﹣3),當(dāng)x取何值時,有最小值?最小值是多少?
(2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費用,共490元;二是設(shè)備的租賃使用費用,每天200元;三是設(shè)備的折舊費用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時,該設(shè)備平均每天的租貨使用成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=20cm,AD=30cm,∠ABC=60°,點Q從點B出發(fā)沿BA向點A勻速運動,速度為2cm/s,同時,點P從點D出發(fā)沿DC向點C勻速運動,速度為3cm/s,當(dāng)點P停止運動時,點Q也隨之停止運動,過點P做PM⊥AD交AD于點M,連接PQ、QM.設(shè)運動的時間為ts(0<t≤6).
(1)當(dāng)PQ⊥PM時,求t的值;
(2)設(shè)△PQM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使得△PQM的面積是ABCD面積的?若存在,求出相應(yīng)t的值;若不存在,請說明理由;
(4)過點M作MN∥AB交BC于點N,是否存在某一時刻t,使得P在線段MN的垂直平分線上?若存在,求出相應(yīng)t的值;若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,D為邊AC的延長線上一點(),平移線段BC,使點C移動到點D,得到線段ED,M為ED的中點,過點M作ED的垂線,交BC于點F,交AC于點G.
(1)依題意補全圖形;
(2)求證:;
(3)連接DF并延長交AB于點H,用等式表示線段AH與CG的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:
次數(shù) | 購買數(shù)量(件 | 購買總費用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根據(jù)以上信息解答下列問題:
(1)求A,B兩種商品的單價;
(2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知邊長為4的正方形ABCD,E是BC邊上一動點(與B、C不重合),連結(jié)AE,作EF⊥AE交∠BCD的外角平分線于F,設(shè)BE=x,△ECF的面積為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線與軸交于、兩點,與軸交于點.
(1)求拋物線解析式:
(2)拋物線對稱軸上存在一點,連接、,當(dāng)值最大時,求點H坐標(biāo):
(3)若拋物線上存在一點,,當(dāng)時,求點坐標(biāo):
(4)若點M是平分線上的一點,點是平面內(nèi)一點,若以、、、為頂點的四邊形是矩形,請直接寫出點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組的同學(xué)們,想利用自己所學(xué)的數(shù)學(xué)知識測量學(xué)校旗桿的高度:下午活動時間,興趣小組的同學(xué)們來到操場,發(fā)現(xiàn)旗桿的影子有一部分落在了墻上(如圖所示).同學(xué)們按照以下步驟進(jìn)行測量:測得小明的身高1.65米,此時其影長為2.5米;在同一時刻測量旗桿影子落在地面上的影長BC為9米,留在墻上的影高CD為2米,請你幫助興趣小組的同學(xué)們計算旗桿的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com